
Chapter 11
Middleware Support for Self-aware Computing
Systems

Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

Abstract The implementation of a distributed self-aware computing system (SACS)
typically requires a substantial software infrastructure. A middleware system with
dedicated services for self-awareness and self-expression can therefore support the
development of SACS applications. In this chapter we show the advantages of using
a middleware system as the basis for a self-aware computing system. We identify
requirements for middleware systems to support the development of self-aware ap-
plications. By providing facilities for communication, decoupling and transparency,
middleware systems can provide essential features needed in SACS. We compare
different middleware paradigms and their suitability to support self-awareness in
distributed applications. We argue that the publish/subscribe paradigm is very well
suited for this application area since it supports modularisation and decoupling.
Units can be added to and removed from existing applications and may well be
reused in new applications. Thus, SACS can be constructed by recombining exist-
ing publish/subscribe modules. In addition, we present details of publish/subscribe
and introduce our middleware implementation called Ella. We describe how differ-
ent aspects of a SACS and patterns for self-aware applications can be represented
using Ella. We present different communication paradigms in Ella (broadcasting,
peer2peer) as well as decoupling mechanisms provided by the middleware. We ar-
gue that SACS applications can be developed (i) faster, (ii) more efficiently and (iii)
more reliable with Ella. Finally, Chapter 13 presents a self-aware and self-expressive
multi-camera application which has been implemented with Ella.
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11.1 Introduction to Middleware Systems

Self-aware computing systems (SACS) [310, 212, 241] are often distributed systems
i.e., networked computing systems running on multiple network nodes. Distributed
applications are inherently more difficult to design, develop and maintain than appli-
cations running on single nodes. This is also true for distributed SACS. Middleware
systems are therefore employed in networked application architectures to ease the
development by abstracting parts of the networking from the application. These con-
cepts can also be reused in the context of SACS. However, for self-aware computing
we see additional requirements for a middleware system.

In this chapter we look at different middleware paradigms and discuss their suit-
ability to support SACS. We show which middleware functions can support architec-
tural primitives of self-aware systems and focus on the publish/subscribe paradigm.
Further, we present a specific implementation—the Ella middleware [100]—and de-
scribe how its properties can support the development of distributed SACS.

11.1.1 Middleware Basics

A middleware system is a software layer which is located between the operating
system and the application. Therefore, it serves as a bridging layer connecting dis-
tributed applications. Middleware thus provides similar services as an operating sys-
tem but for distributed applications rather than for a single computer. The distinction
between operating system and middleware functionality is, to some extent, arbitrary.
While core kernel functionality can only be provided by the operating system itself,
some functionality previously provided by dedicated middleware systems has been
integrated into operating systems nowadays. A typical example is the TCP/IP stack
for networking, nowadays included virtually in every operating system. As shown
in Figure 11.1, every device in a network runs middleware which is located between
the application and the transport layer. The logical communication is established be-
tween the corresponding layers of different devices and is depicted by the horizontal
dashed lines. The physical communication takes place in a vertical manner through
the communication stack of the devices and is depicted by the solid lines.

In a distributed system, the applications typically face heterogeneity in multiple
dimensions. Such applications run on different physical locations, using different
hardware platforms, networking technologies, operating systems or programming
languages. A middleware system provides services for a distributed execution of
applications and therefore eases the application development. Key aspects are hiding
the complexity and heterogeneity of a distributed system and providing a messaging
service that enables communication across all platforms within the system. A further
important aspect of middleware systems is reusability.

An example of modern heterogeneous systems is a smart environment applica-
tion. Smart environments are typically composed of different sensors, such as visual,
acoustic or infrared sensors [278, 332]. In these networks, each node performs local
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Fig. 11.1 Layered network architecture of multiple devices in a network

actions such as sensing and global actions including communication and coopera-
tion with neighbouring nodes.

Summarised, a middleware system should provide the following functionalities:
(i) hiding distribution, (ii) hiding heterogeneity and low-level details, (iii) provid-
ing uniform language and platform-independent interfaces to application develop-
ers, (iv) providing common services such as messaging. Applying the design pat-
terns presented in Chapter 5, middleware can support an application in accessing
external sensors and activating external actuators. Depending on the paradigm, mid-
dleware can also provide support in implementing self-awareness principles and
self-expressive behaviour. The reference architecture introduced in Chapter 4 can
be implemented by means of a middleware system if it is realised as a distributed
application.

11.1.2 Application Example of a Distributed Self-aware
Computing System

To explain SACS and middleware usage in such systems, we introduce a sensor
network example. A distributed sensor network consists of various sensors and ac-
tuators which have some communication capabilities. There is no central entity con-
trolling the network nodes. The actions taken by nodes rely on environmental infor-
mation and on interaction with local neighbours. Sensors capture certain events (i.e.,
light intensity, temperature) and push them as stimuli into the application. This can
mean either that the sensor uses this data itself to change its own behaviour or that
it informs other nodes in the network (i.e., by a broadcast).

We use a sensor network within a smart environment as an example. It is respon-
sible for controlling the access of persons to rooms within a building. In addition,
it informs the infrastructure within a room of who has entered it, in order to al-
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low the smart environment to adapt to specific users. It consists of passive infra-red
(PIR) sensors, RGB cameras, an authentication/authorisation node as well as actua-
tors which control door locks. To save resources and to minimise privacy invasion,
the RGB cameras are in standby by default, where they do not record any images.
Whenever a PIR sensor in front of a door recognises movement, it sends out a mes-
sage which activates all corresponding cameras. They will start to stream images
which are processed by the authentication/authorisation node. There, face recog-
nition algorithms are used to determine if the person is allowed to access a certain
room. If a face has successfully recognised, the sensor network will instruct the door
locks to open. In addition, the smart environment within the room may adapt to the
newly entered user by adapting the lighting or switching on devices. Which adap-
tation is performed depends on the devices in the room and the profile of the user.
Figure 11.2 shows a visualisation of the example application using the reference
architecture introduced in Chapter 4.
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Fig. 11.2 Visualisation of the example application using the reference architecture introduced in
Chapter 4

The PIR sensor detects movement in the environment with its external sensors.
Upon a movement detection, the self-awareness module of the PIR sensor is in-
formed by the sensors. This module is the prerequisite for self-expression capabili-
ties, which allow a node to react properly to certain events. Thus, the self-expression
module is responsible for deciding on how to act based on learnt models. In the
case of the PIR sensor, this module issues a wake-up signal in order to inform the
appropriate cameras of a movement in their area of interest. The wake-up signal
received by a camera triggers its self-awareness module. Since cameras are aware
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not only of stimuli from the environment but also of stimuli from other agents, they
are stimulus- as well as interaction-aware. The self-expression module of a camera
reacts properly by starting to stream images to the authentication node. This node
performs a face detection and forwards the identity information to the authorisa-
tion node, which decides if a door should be unlocked. If so, it issues an unlock
command which is received by the door lock node. The door lock node is also time-
aware, since it is able to lock an unlocked door after a certain time period. The
self-expression module of the door lock node decides on the lock status of the door
based on the learnt knowledge.

This application poses several challenges and can profit from SACS design prin-
ciples. First, there are components with different purposes which change their states
based on input from internal and external sources. Second, time dependencies exist
in this system (e.g., biometric information must be current in order to open the door
for the right person). Third, the various components should not constantly poll their
data producers for recent data. Instead, new data should be provided in a push-based
manner.

This networked application can be supported by a middleware system. First,
multiple networked devices have to be connected to an integrated system. Second,
the same application may run in different infrastructural circumstances, i.e., some
rooms may not have PIR sensors (requiring the cameras to run permanently) or
there may be additional authentication devices such as fingerprint or card readers.
Further, different smart environment devices need to react differently to new per-
sons. This requires the application to adapt and scale. Most of those circumstances
can be hidden to the application using a middleware system. Finally, networked
applications are typically rather communication intensive. Middleware reduces the
amount of time required to implement such an application and can also be used to
transparently incorporate different networking technologies like WiFi and ZigBee.
In addition, middleware systems which provide space decoupling (i.e., hide the ex-
act location of application modules) enable a restructuring of the application to a
single node without programming effort.

We will use this application scenario consistently throughout this chapter to ex-
plain self-awareness requirements, middleware paradigms and implementation con-
cepts.

11.2 Middleware Requirements

In order to be useful for distributed applications, a middleware system must sat-
isfy several general requirements. First, it must provide meaningful services to the
application (e.g., communication and access to data). Second, it must be flexible
enough to allow for application restructuring and quick exchange of functionality.
Thus, applications should be constructed from several modules or plug-ins. Further,
the middleware system should provide mechanisms to decouple individual modules,
i.e., make them independent from each other wherever possible. Also, a middleware
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system should ease application development by hiding complexity regarding hetero-
geneous hardware or networks. As an example, the size of a network can be hidden
by a middleware system, i.e., a developer should not be concerned if the application
runs on two or twenty nodes. Thus, a middleware system must transparently adapt
its operation according to the network size. This also includes changing the network
size, i.e., when nodes join or leave the network during the application runtime.

Finally, it is required that the middleware system be simple, both in structure and
usage. This reduces the effort for understanding and using its concepts in developing
applications, makes the execution faster and eases maintenance.

Distributed self-aware computing systems pose additional requirements to a mid-
dleware system. While it is not required for the middleware itself to be self-aware, it
should support the application in being self-aware. It must provide facilities which
make it easy for developers to asses the self-state of the system and to express it in
the application behaviour.

We derive feature requirements for a SACS-supporting middleware from the ar-
chitectural primitives (see Chapter 12) of a self-aware computing system as shown
in Table 11.1.

Table 11.1 Middleware requirements derived from SACS architectural primitives

Architectural primitive Supporting middleware feature

stimulus-awareness Ability to push a new stimulus to the application

interaction-awareness Ability to enable the application to participate in interactions with other
application parts

time-awareness Ability to relate stimuli or events to time instances or knowledge of his-
torical/future phenomena

self-expression Ability to re-route and modify data flows and ability to be split into com-
ponents and exchange modules during runtime

For stimulus-awareness, the application needs a comfortable way to receive a
stimulus. For a video-processing application, this might be a new image coming
from a camera. Thus, a middleware system should provide a mechanism to push
stimuli into the application or actively notify the application of a new stimulus.

To support interaction-awareness, the middleware system should make it easy
for the application to participate in interactions like auctions, communication groups
and multicast channels. This includes easy dissemination of messages and data and
push-based message and data reception. Therefore, nodes need to know with whom
they are communicating.

Supporting time-awareness means providing time information to the application.
This can be done in various ways and on different levels: (i) time-stamping events,
(ii) keeping the intervals between events proportional to the real time intervals, (iii)
temporally ordering events and (iv) maintaining knowledge of historical data or pre-
dicting future phenomena. A middleware system can support each of these levels.
For time-stamping the middleware system could by default add a header including
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a time-stamp to each application message. Keeping the right time intervals and en-
abling temporal ordering would require the middleware system to buffer messages.
To increase knowledge of historical data, the middleware system needs to store past
events and enable nodes to access this data. Additionally, many distributed applica-
tions should run without any synchronisation. This means that the interacting par-
ties do not need to be actively participating in the interaction at the same time. The
middleware system should therefore support unsynchronised communication and
interaction (known as time-decoupling).

Self-expression allows a node to take actions appropriate for learnt models or
knowledge. A middleware system can support the application in re-routing data
flows or by activating and deactivating system parts based on self-awareness. The
latter can be realised in middleware systems which support a developer in modular-
ising an application and thus make it easy to exchange modules at runtime.

Summarised, developing a distributed SACS application can be noticeably sim-
plified by the support of a middleware system. At start-up of the application,
node discovery is the main issue. A middleware system should take care of dis-
covery of neighbouring nodes to enable later interaction between them and sup-
port interaction-awareness. Further, the middleware system should take care of the
communication—forwarding of messages/events, communication channel, buffer-
ing of messages, etc. Taking care of delivery of messages and events means sup-
porting stimulus-awareness of the application. In the sense of time-awareness, a
middleware system could take care of temporal ordering of events (lowest form of
time-awareness) or time-stamping of application messages (highest form of time-
awareness). Also, self-expression can be supported by a middleware system.

11.3 Middleware Paradigms

Keeping the design issues and application goals in mind, middleware systems have
to fulfill certain requirements in order to be useful in developing SACS. We classify
middleware systems into the following two approaches: host-centric and content-
centric systems.

A host-centric middleware system allows distributed applications to exchange
general-purpose messages between specified hosts. This is used to remotely call
functions, transport data and send notifications to known hosts. A key aspect of
host-centric approaches is that for a single call typically there is a single previ-
ously known remote host. Those kinds of systems were originally intended to sup-
port only synchronous communication. However, language-specific extensions also
allow asynchronous communication. Message delivery is enabled by knowing the
host to communicate with and is ensured using reliable message queues.

In content-centric middleware, the nodes or applications are interested in spe-
cific data, rather than in the origin or sink of the data. A producer publishes data
by making it accessible to the other nodes of the network. Consumers interested in
this type of data can then consume the data. Content-oriented systems rely on asyn-
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chronous communication, which means that processes do not need to be blocked
while waiting for a reply. Using this approach, senders have no guarantee that their
messages are read and no indication in the transmission time. The main advantage is
that communication can be realised in either a one-to-one or a one-to-many manner,
whereby neither producers nor consumers care about that.

11.3.1 Host-Centric Middleware

Host-centric systems are interested in the host they are communicating with. Those
systems typically support synchronous communication with a possible extension
to asynchronous communication. In synchronous communication, the sender is
blocked until a reply message is received. This means that the sender cannot ex-
ecute any other functions while waiting for a reply. Further, connection overhead
is introduced, since each call requires, for instance, marshalling (transformation of
the stored object to data which is suitable for transmission). Another drawback is
that senders need to know receivers and their locations or addresses in advance. Us-
ing asynchronous communication, sender and receiver are loosely coupled, meaning
that a sender continues its work after sending a message. When the call returns (i.e.,
it has been processed on the remote host), the sender can collect the return value.

11.3.1.1 Remote Procedure Calls (RPCs)

A well-known example of host-centric middleware systems is the so-called remote
procedure call (RPC) [300]. RPC enables the invocation of a procedure or function
on a remote node in the same way local procedures are called (as if they belong to
the same process). RPC uses synchronous communication, meaning that the calling
process blocks until the remote procedure replies to the call. Changing interfaces
of procedures on one side will therefore result in the need for changes of the calls
to the procedures, making RPC inflexible. A remote procedure call is a one-to-one
communication, i.e., to call a procedure on multiple remote hosts, multiple calls are
necessary. RPC calls work similarly to local function calls: the calling arguments
are passed to the remote procedure and the caller waits for a response. A remote
procedure needs to be uniquely identifiable within the whole network. An example
implementation of RPC is the so-called message passing interface (MPI). In MPI,
the sender sends a message to a process rather than invoking a function directly by
name. This standard defines syntax and semantics of core library routines to ease ap-
plication development. It supports one-to-one as well as collective communication
and is the most widely used model in high-performance computing.
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11.3.1.2 Object-Oriented Middleware (OOM)

Object-oriented middleware systems extend the pure method-oriented concepts of
RPC to object-oriented programming. Here, not only a functional interface but
whole objects are provided to a remote interaction partner. Within an object-oriented
language, remote and local objects can ideally be used in the same way.

Prominent implementations of OOM systems are CORBA, JavaRMI, SOAP and
.NETRemoting. Common Object Request Broker, known as CORBA [401], allows
method calls between application objects of different applications. CORBA hides
the complexity of different operating systems and hardware platforms from the ap-
plication developer, enabling an easier development of distributed applications. An
interface definition language (IDL) is used to specify the interfaces represented by
objects to the network. Mappings from IDL to programming languages such as Java
or C++ are also specified by CORBA. CORBA data such as integers or arrays are
passed by value, while CORBA objects are passed by reference. Although CORBA
supports flexible data types, data-by-value passing enforces strong data typing. Ob-
ject Request Broker is the essential concept used by CORBA. ORB allows clients to
make requests for services without the knowledge of the server’s location or inter-
face. To enable correct delivery of messages and replies, the IIOP protocol is used.
The Internet Inter-ORB Protocol (IIOP) enables applications of different nodes and
different operating systems to communicate via the Internet.

Java Remote Method Invocation (JavaRMI) [357] performs the object-oriented
equivalent of RPC, with support for direct transfer of serialised Java classes and
distributed garbage collection. Like CORBA and JavaRMI, .NET Remoting [331]
allows an application to make an object available across remote boundaries, which
includes different application domains, processes or even computers connected by
a network.

11.3.1.3 Service-Oriented Architectures (SOAs)

Service-oriented architectures are a general pattern of structuring applications. Sin-
gle parts of applications are modelled as independent reusable services. Nowadays,
SOA is typically implemented using web technologies, but also other realisations of
this concept exist.

Simple Object Access Protocol (SOAP) [152] is a protocol specification for ex-
changing structured information in the implementation of web services in computer
networks. It uses the XML information set for its message format, and relies on
other application layer protocols, most notably hypertext transfer protocol (HTTP)
or simple mail transfer protocol (SMTP), for message negotiation and transmission.
A SOAP service typically provides a description of its methods and structures by
means of a WSDL document (web service description language) [75]. This enables
developer tools to generate client-side code for accessing a SOAP service automat-
ically, which results in less error-prone and faster development.
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However, the use of XML as transport envelope results in a large overhead in
messages, thus making SOAP a technology rather unsuitable for embedded soft-
ware. REST web-services (representational state transfer) [135] have proven to
be a lightweight alternative to SOAP. REST uses standard HTTP methods such
as GET, POST, PUT, DELETE to communicate to a remote server (i.e., GET
is used to retrieve information, POST is used to send a certain payload, and so
on). Methods to invoke are identified by URL paths. As an example, GETing
http://www.myservice.com/Items would return a list of items available while POST-
ing to this URL may append one item. GETing http://www.myservice.com/Items-
/Item42 returns the item with index 42 while DELETEing would remove the corre-
sponding data package. The payload in REST communication is typically serialised
as XML or JSON data (Java Script Object Notation [86]). The advantage of REST
is that nearly every connected device and platform has HTTP-accessing capabilities.
Today, REST is the main communication paradigm used in smartphone apps.

11.3.1.4 Consequences of Host-Centric Middleware Systems for the
Application Example

For a demonstrative explanation, we refer you to the example described in Sec-
tion 11.1.2. Using a host-centric middleware system, the sensors need to be able to
address the nodes they want to communicate with. If they want to share sensed data,
they have to directly transmit them to a specific receiver. If synchronous communi-
cation is used, the sender is blocked until a response is received. This means that the
sending node cannot continue sensing during message exchange. If for instance a
PIR sensor wants to notify other parts of the system about detected motion, it needs
to know the receivers and their addresses in advance. In this case, an application
extension from cameras to cameras and audio sensors would explicitly affect the
behaviour of PIR sensors.

The discovery of newly joining nodes is cost intensive, since those nodes have to
distribute their address/location through the whole network and need to learn those
of neighbouring nodes. Referring to our application example, supporting a changing
smart environment within a room is cost-intensive (e.g., various devices are active
at different times of the day, which is rather complicated to realise).

An RPC-based implementation of a sensor network first requires a definition of
the functional interface of each node (i.e., the procedures available to be called by
remote nodes). Further, the application needs mechanisms enabling nodes to find
addresses of remote nodes. In a rather static network, this can be achieved by pre-
defined host lists. Dynamic networks, in which nodes may join or leave, require
a discovery mechanism or a centralised lookup registry (a previously known host
where nodes can register on start-up and look up addresses of other nodes).

In an object-oriented implementation of our example sensor network, the mid-
dleware system first needs to define the object structures. Then the node addresses
need to be resolved either by registry or pre-definition.
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A sensor network which uses REST services in communication requires each
sensor to run an HTTP server in order to receive incoming stimuli. A well-defined
set of REST API calls has to be known already at design-time. To push a stimulus
to multiple nodes, multiple HTTP requests have to be performed. This is hardly
feasible for communication between all sensor nodes but may make sense in case
multiple sensors report to the same sink node.

Summarised, host-centric systems were intended for synchronous operations
which require sender and receiver to know each other and to block senders during
data transfer. Further, synchronous operations support only one-to-one communica-
tion. Neighbour discovery is rather expensive as we can see on the example of REST,
where services can only be accessed using fixed URLs. The benefit is the intuitive
and transparent usage. Host-centric systems also support SACS in certain aspects.
A detailed description of awareness requirements which are fulfilled by host-centric
systems can be found in Section 11.3.3.

11.3.2 Content-Centric Middleware

In content-centric middleware systems, sending and receiving messages is not the
central architectural viewpoint. Instead, the focus lies on accessing data indepen-
dently of who is producing and who is consuming it. Typically, a data-oriented
middleware system is used to transparently decouple content sources and content
sinks (producers and consumers). While also host-centric paradigms are used to ex-
change data, they typically assume that the location of this data is known in advance
(i.e., the URL of a SOAP service). In addition, they typically lack the capabilities to
deal with multiple producers (i.e., multiple nodes would host a certain web service)
compared to content-centric systems. Content-centric middleware systems can be
realised in either a centralised or a distributed way.

11.3.2.1 Blackboard Systems

A blackboard system is a centralised content-centric middleware solution. Black-
board systems are distributed implementations of Linda spaces [8], where multiple
processes exchange data via a centralised tuple matching system. In this approach,
a producer provides its data by releasing it to a central point in the network (pub-
lishing the data on a blackboard). Consumers that are interested in that type of data
can simply collect the data from the central point. A prominent example is the so-
called tuple space. A tuple space can be interpreted as a distributed shared memory.
It provides a repository of tuples that can be accessed concurrently. Producers post
their data as tuples in the space, and the consumers then retrieve data from the space
that match a certain pattern.
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11.3.2.2 Message Queuing

Message queuing is another centralised host-centric middleware paradigm which
uses the message queuing principle. Message queuing enables asynchronous com-
munication and provides decoupling of senders and receivers, allowing them to be
active at different times. Senders place their messages at a central point in a mes-
sage queue, where they are stored until the receiver collects them. Since such a
queue has restrictions on size, the number of messages in the queue and the size
of messages are limited. Message queuing is a programming pattern allowing asyn-
chronous applications in a distributed system to communicate with each other via
message queues. A queue manager and the queues reside on a server node. Appli-
cation nodes can send or receive messages only from message queues belonging to
queue managers to which they are connected.

Message queue telemetry transport [26], known as MQTT, implements the mes-
sage queuing pattern. MQTT is used for the transport of telemetry data and is well
suited for wireless sensor networks or mobile-to-mobile communication since it is
very lightweight [188]. In MQTT, the sender continuously transmits its sensor data
to the message broker. Nodes which are interested in this kind of data collect it from
the message broker. MQTT runs on connection-oriented transport (TCP).

11.3.2.3 Publish/Subscribe

Publish/subscribe [126] systems work in a similar way as blackboard systems do,
especially if they are realised as a centralised solution. Publishers offer data and sub-
scribers show interest in specific data by subscribing to that type of data. Thereby,
publishers publish their data without any knowledge of the sink, and subscribers
consume data without knowledge of the source. However, an important difference
with blackboard systems is that in publish/subscribe the middleware system pushes
data to subscribers whereas in a blackboard they have to pull data on demand. Pub-
lish/subscribe can be realised in a centralised as well as a distributed manner. In
the centralised solution, a central unit is in charge of matching publishers with sub-
scribers. The distributed solution does not need any central node to publish the data
to or consume the data from. The middleware system is in charge of delivering the
data to subscribers of matching data type. A detailed explanation of publish/sub-
scribe can be found in Section 11.4.

11.3.2.4 Consequences of Content-Centric Middleware Systems for the
Application Example

Referring to the example in Section 11.1.2, a sensor network based on the black-
board concept or on a message queue requires a central node. The blackboard sys-
tem or the message queues and the queue manager would reside on this central
node, which is responsible for delivering messages or data to the appropriate re-
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ceivers. Thus, every node within the network has to communicate with the central
node if it wants to interact with other nodes of the network. The central node may
thus become a bottleneck of the system. In the case of message queuing, there has
to be a queue for PIR notifications, a queue for camera images, a queue for autho-
risation information and a queue for user information. If the application is extended
to more devices, they can use the already existing queues as input and define their
own queues as output.

In publish/subscribe, there may or may not be a central entity, depending on the
implementation. In any case, nodes only need to indicate their interest in specific
data in order to start receiving it. However, without additional meta-data or mid-
dleware functionality, the node may not be able to distinguish between data of the
same type received from different publishers. As an example, devices which want to
process user information subscribe to this type of data and the middleware system
will take care of finding suitable publishers and data transport.

Summarised, in content-centric middleware systems the focus lies on the data it-
self rather than on the data source or sink. This enables decoupling of data producers
and consumers. Further, communication can be done in a one-to-one or one-to-many
manner, since the data producers are not interested in who is consuming the data.
As with host-centric systems, content-centric systems also support several SACS
aspects, which can be found in Section 11.3.3.

11.3.3 Requirements Conformity of Middleware Paradigms

Table 11.2 shows which awareness requirements are fulfilled by the different types
of middleware systems.

All middleware paradigms support stimulus-awareness whenever they push data
into an application module. Using host-centric middleware, such as RPC, OOM and
SOA, nodes have to directly address other nodes in order to push a new stimulus.
In content-centric middleware concepts, nodes push their stimuli to the network
by offering it to other nodes. Nodes which are interested in the information can
then collect it. Since one of the main features of middleware systems is to provide
communication and data exchange facilities to distributed applications, this makes
them inherently interaction-aware.

Additionally to message exchange, a middleware system also enables nodes to
express their selves. Host-centric paradigms explicitly model the data flow (they
directly address each host) and can thus easily change this flow based on the self-
awareness state. Data-centric approaches provide facilities to change the data pro-
duced and consumed by application modules and thus enable a change in the ap-
plication behaviour. This means both types of middleware support applications
in changing their behaviour based on the self-awareness state and are thus self-
expressive.

Host-centric middleware solutions are not time-aware, since they typically do not
care about time-stamping, temporal ordering of events or time-decoupling. How-
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ever, content-centric solutions can support time-awareness in different ways. Pub-
lish/subscribe and message queuing systems can support time-awareness. In both
paradigms, messages can be buffered in queues. This means they can be delivered
in right intervals and/or in temporal order. A similar explanation holds for black-
board systems, since the data is stored at a central point where it can be buffered or
time-stamped.

Interaction-awareness is supported by all host-centric middleware systems, since
they need to know the host they are communicating with. In content-centric mid-
dleware systems, senders and receivers do not know each other, since they are only
interested in the data which is exchanged. Without knowing other nodes, a sender
is not able to interact with one specific node. Thus, content-centric solutions do not
directly support interaction-awareness. To enable the application to participate in
interactions with other application parts, a content-centric middleware system re-
quires an additional communication channel. This channel could then be used by
nodes to interact with specific neighbours.

Table 11.2 Support for awareness primitives in various middleware paradigms

SA/SE Primitive RPC OOM SOA Blackboard Message queuing Pub/Sub

stimulus-aware 3 3 3 3 3 3

interaction-aware 3 3 3 7 7 7

time-aware 7 7 7 3 3 3

self-expression 3 3 3 3 3 3

11.4 Publish/Subscribe

In this section we present the publish/subscribe paradigm in more detail to show
how it can support SACS.

The publish/subscribe paradigm is a type of content-centric middleware, defin-
ing two different roles: a publisher and a subscriber. Publishers are modules which
produce data (e.g., capturing images or fetching data from a specific source) to then
pass it on to consumers, the so-called subscribers, which process the data. A mod-
ule may be publisher and subscriber at the same time, i.e., it processes data from
another publisher and publishes the results itself.

Publish/subscribe is a mechanism which allows for elegant decoupling of func-
tional elements within applications. A component for publish/subscribe manage-
ment takes care of the decoupling. Instead of directly connecting the publisher and
subscriber modules, a publisher announces its events and a subscriber can announce
interest in certain types of events. The publish/subscribe management takes care of
matching published events and subscriptions and is also responsible for delivering
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the published data to all interested subscribers. This means that publishers provide
their data to the network, rather than sending their events to specific receivers.

A key requirement of publish/subscribe is that neither publishers nor subscribers
need to be aware of each other. A publisher does not need to keep track of where
its data is sent and how many subscribers exist for its events, and a subscriber does
not need to care about where publishers are located and where their data is coming
from (i.e., the local node or a remote node). All this is transparently handled by the
publish/subscribe middleware system.

In the case of a centralised publish/subscribe solution, the publish/subscribe man-
agement resides on the central node. We prefer a decentralised solution since cen-
tralised networks are hardly scalable. Figure 11.3 illustrates a distributed publish/-
subscribe architecture, where a small publish/subscribe management component re-
sides on each node in the network and is responsible for its local modules and for
connecting them to remote nodes.

Local 
Publish/subscribe

Manager

Publisher

Subscriber

Network Node

Publish

Subscribe

Unsubscribe

Notify

Discover
Subscribe

Unsubscribe
Notify

Fig. 11.3 A simple distributed publish/subscribe system. Each node keeps track of other nodes and
subscriptions in the network.

The publish/subscribe management is responsible for notifying subscribers when-
ever data of their interest is published. To enable these notifications in this many-
to-many interaction, publish/subscribe relies on asynchronous communication. The
messaging model of publish/subscribe systems is very powerful, connecting senders
and receivers of messages anonymously. It provides many-to-many and one-to-
many interaction, enabling a sender to send its messages to either one or multiple
receivers. There is no restriction on the role of a node within a publish/subscribe
system. Each node can be a publisher, a subscriber or both.
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There are three methods that are typically provided by a publish/subscribe mid-
dleware system: subscribe(), unsubscribe() and publish(). The subscriber calls the
subscribe() method to show its interest in specific event data and the unsubscribe()
method whenever it is no longer interested in this data. The publish() method is
called by publishers to notify that there is new event data ready to be offered to sub-
scribers. To enable the matching of published events and subscriptions without the
need for the source to know the sink and vice versa, different subscription schemes
had been defined. Those are explained in the following section.

11.4.1 Publish/Subscribe Flavours

Since subscribers are usually interested in some specific events, rather than in all
events, a way of defining different events is required. Three different schemes can
be used to define event classes, typically called subscription schemes.

11.4.1.1 Topic-Based Publish/Subscribe

Events in a topic-based scheme are defined by specific keywords, e.g., the name of
the topic. This means that publishers publish events of a particular topic and all sub-
scribers interested in this topic receive these events. The communication between
publishers and subscribers is done via messages, including the command, the topic
name and the event data. Thus, each topic can be seen as event service, offering
a publish() and subscribe() method for its own specific topic. Topic-based publish/-
subscribe is a rather static scheme with limited expressiveness, but can be efficiently
implemented [126].

11.4.1.2 Content-Based Publish/Subscribe

Events in a content-based scheme are defined by its content, e.g., its properties. This
means that subscribers subscribe to content (properties of an object) they would like
to receive rather than to a topic name. Events are thus not predefined by keywords,
which makes the scheme dynamic. Properties can be internal attributes or meta-data
related to events. Subscribers subscribe to an event by typically using a key-value
pair. Furthermore, some systems provide a mechanism for event correlation. In these
systems, subscribers can subscribe themselves to different combinations of events
and are only notified by the event service if this combination of events is provided
by the publishers.

In the case of content-based publish/subscribe, the event service provides the
subscribe() method with an additional argument. This argument defines the content
to be subscribed to and can be either a string or a template object. By using template
objects, the subscriber provides an object that it is interested in and the event service
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notifies the subscriber only on occurrence of events of the same properties. The
advantage over topic-based publish/subscribe is that events are no longer bound to
fix criteria such as the topic name and that content-based publish/subscribe is highly
expressive.

11.4.1.3 Type-Based Publish/Subscribe

In a type-based scheme, subscribers express their interest in events by subscribing
to the type of an object. This scheme guarantees type safety at compile-time and
encapsulation, which is an advantage in implementation simplicity over the other
two schemes. By using public class members, type-based publish/subscribe would
transform into content-based publish/subscribe. However, in type-based publish/-
subscribe, private class members, which can only be accessed through public meth-
ods, are used.

11.4.2 Decoupling

A publish/subscribe system enables decoupling in the following dimensions:

• Space decoupling: Modules do not need to know where they and other mod-
ules are located in the network. This means that publishers do not hold any
references to subscribers and vice versa. In a visual sensor network (VSN), a
publisher of images does not need to care if they are delivered to one or more
displays or other modules.

• Time decoupling: Publishers and subscribers do not need to participate in an
interaction at the same time. The publisher might for instance publish an event
while there is no subscriber connected. Publishers which start after a subscriber
can still be matched to an earlier subscription request. In a VSN, cameras may
not start up at the same time; still, they must form one distributed application.

• Synchronisation decoupling: Preparing events does not block the publishers,
and subscribers can be notified of an event even though they are currently ex-
ecuting another activity. As an example, a publisher of images can capture the
next image while the current image is still being delivered to subscribers.

11.4.3 Publish/Subscribe for SACS

Publish/subscribe enables self-awareness and self-expression, making this paradigm
very suitable for SACS. As already described above, publish/subscribe supports an
application in being stimulus-aware, time-aware and self-expressive.

Subscriptions of data consumers enable private and public self-awareness. Nodes
perceive their environment and react properly by subscribing to specific information
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and data. In tracking, for instance, a camera recognises whenever the object is going
to leave the FOV (private self-awareness). The camera may then decide to hand over
tracking responsibility to a neighbouring camera (public self-awareness).

By publishing data, self-expression is achieved. Since the publisher forgets about
the data as well as the publishing process after publishing, we call it fire-and-forget
self-expression.

11.5 Ella: A Publish/Subscribe-Based Hybrid Middleware

In the previous sections we have seen how different middleware paradigms can sup-
port different aspects of SACS. Of course, an application does not need to miss
self-awareness features which are not supported by the middleware. However, they
need to be implemented on the application layer.

In this section, we present a middleware implementation called Ella [100] which
is available as an open source project1. Ella is designed as a hybrid middleware
system combining features of host-centric and content-centric paradigms in order
to provide an improved basis for self-aware applications. Ella in its basics is a dis-
tributed publish/subscribe middleware system. However, additional features have
been added to allow for interaction- and self-awareness. Ella in its core builds on
decoupled modules which do not have direct references to each other. This modu-
larised architecture enables application modules to be exchanged at runtime.

11.5.1 Architecture

In this section, we present the architecture of the Ella middleware system. While
there are several paradigms for middleware systems, like RPC or OOM, we chose a
data-driven publish/subscribe approach. This allows for a high degree of flexibility
since it provides decoupling in space and time. In contrast to other publish/subscribe
implementations such as [388], Ella is completely distributed without the need for
any central coordination. The publish/subscribe implementation of Ella is explained
in the following sections.

11.5.1.1 Subscribing

Ella uses type-based subscriptions, which means that a subscriber specifies a cer-
tain data type to subscribe to. Additionally, Ella provides the possibility to request
a template object. The middleware system will then ask each publisher (which is
matching in type) to generate such a template object and will hand it to the prospec-

1 https://ella.codeplex.com/
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tive subscriber. The subscriber can then decide whether this specific publisher is
accepted or not.

In addition, upon subscribing, the subscriber can decide to exclude remote pub-
lishers to obtain only subscriptions from the local node. This can be useful whenever
node-specific information is requested, such as the current resource allocation.

Optionally, a subscriber can provide a callback method which is called whenever
it is subscribed to a new publisher. The subscriber will be provided with a handle
object which can be used to distinguish between multiple publishers but without
making them identifiable.

11.5.1.2 Publishing

A publisher publishes events of a certain data type, which is then matched to sub-
scribers by Ella. Similarly to subscribers, publishers can also provide callback meth-
ods which are called by Ella for each new subscriber to a certain event. Publishers
can use this information to publish certain information to only a subset of sub-
scribers. As an example, some subscribers to images of a camera may send an ap-
plication message to the publisher asking for a reduced frame rate. The publisher
can then publish at a lower rate to those subscribers which have requested this.

11.5.1.3 Realisation of Publishers and Subscribers

Creating a publisher or a subscriber for Ella is a straightforward task. Instead of
forcing developers to implement a specific class hierarchy (i.e., subclassing a base
class or implementing an interface), Ella uses code annotations to declare a certain
class to be a publisher or a subscriber. These code annotations can be reflected by
Ella at runtime to detect publishers and subscribers in code libraries. This approach
has several advantages. First, it makes it very easy to adapt existing code to run on
top of Ella. It basically requires annotating the existing code and adapting the way
of data passing to the mechanism provided by Ella. Second, it makes the develop-
ment of modules more flexible because developers are not bound to any inheritance
hierarchy and thus it is easier to integrate Ella into any software architecture. Third,
Ella-based code is easily readable and maintainable because the annotations directly
inform about what the specific module does.

11.5.1.4 Network Management and Remote Operation

To support a convenient way of developing and deploying software modules for Ella,
the middleware system provides a transparent node discovery mechanism which is
used to detect any running Ella instances on other nodes in the network. This relieves
the developer of the need for managing other nodes in the network. As soon as an
Ella instance is detected, it is registered as a known host and it will also be checked
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for suitable publishers of events requested by local subscribers. With this approach,
it is much easier to scale an existing application without having to modify existing
code. As soon as Ella detects other instances, it will include them in its operation.

On start-up, Ella tries to first discover other nodes in the network. By default
discovery is realised with a UDP broadcast. This broadcast also contains connection
information necessary to address this node in the network. However, this may be
exchanged with any other suitable discovery provider (e.g., for non-IP compatible
media, like ZigBee). Upon reception of a broadcast message, a node will send a
unicast answer to the broadcasting node with its own connection information. Thus,
each node keeps a local directory of known remote hosts. This directory is used
when searching for matching publishers on other nodes.

Whenever a subscriber requests a new subscription, all remote hosts will be
queried about matching publishers. If any matches are found, proxy objects at the
remote node and stubs at the subscriber node will be created which act as trans-
parent transport points for published event data. A proxy acts as subscriber at the
remote node, serialises the event data and sends it to the stub. The stub deserialises
it and publishes it as a local publisher for the original subscriber to receive.

The requested subscription types by each subscriber module are cached by the
local Ella instance. Whenever a new node is discovered in the network which runs
suitable publishers, they will start to deliver their events to the local node. In addi-
tion, if a publisher has delayed its start, the node sends out a notification to other
nodes that a potential publisher has become available for their subscribers. These
two functionalities enable soft time decoupling and do not require publishers and
subscribers to start at the same time.

11.5.1.5 Communication

Ella instances on remote nodes use an efficient message structure to exchange data.
A binary protocol is used to encode message types and to transport any necessary
data. For any given message payload, only nine bytes of overhead are added, one
byte for the message type, and four bytes each for the sender node ID and the mes-
sage ID. For small networks this can be reduced by only using single bytes for the
sender node ID.

Besides data communication, Ella provides also a unicast control channel be-
tween publishers and subscribers. This can be used to exchange application-specific
messages as in RPC systems. Instead of transporting data, control commands can
be sent between publishers and subscribers. As an example, an image processing
module could instruct the image capturing module to adapt its frame rate. This uni-
cast channel was introduced to enable support of interaction–awareness (see Sec-
tion 11.2), for which nodes have to know each other in order to enable participation
in interactions with specific neighbours.
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11.5.1.6 Implementation Details

Ella has been developed in C#.Net. It is capable of running in the open source Mono2

runtime and can thus be deployed on all major operating systems and many other
platforms. Since it is only performing high-level tasks like I/O and management
of subscriptions, its overhead compared to a native implementation is very low. In
addition, it is easily possible to integrate native code components into any .Net ap-
plication. Thus, performance-critical applications parts can be written in C++ and
be integrated into Ella with low effort. Of course, pre-existing native code can be
integrated as well.

Subscription Handling:
On each node, Ella keeps a list of all subscriptions relevant to this node, i.e., all
subscriptions where modules of this node are publishers and/or subscribers (this is
also true for subscriptions only on the local nodes). Whenever a publisher publishes
a new event, all subscribers are found in this list. In the simplest case, this data is
delivered to a local subscriber (which is on the same node). For remote subscribers,
this list contains the proxy at the publisher node. A proxy serialises the event data
and sends it to the receiver node. There, a stub reconstructs the data and publishes it
locally for the intended subscriber to receive it. In cases where unreliable transport
can be used to deliver data (i.e., where loss of data can be tolerated), a UDP multi-
cast mechanism can be used in order to save communication costs.

Event Correlation:
In some cases, a user might want to indicate that two events are somehow correlated.
For example, the image of a camera and the result of a tracking algorithm might
correspond to each other. For this case, Ella provides a simple mechanism where a
publisher can indicate such a correspondence. This is then delivered to all modules
which subscribed to both events. This is also part of Ella’s interaction-awareness
support capabilities because it enables nodes to handle correlations of the stimuli
they are emitting.

11.5.2 SACS-Specific Features in Ella

Ella provides several useful services to an application. It handles discovery and com-
munication, provides a control channel and helps in modularising an application. It
enables flexible reconfiguration of an application with its module-based architec-
ture. The use of code annotations to declare Ella-specific code regions makes it
very easy for developers to port their existing code. The transparent subscription
mechanism of publish/subscribe enables decoupling in space and time and the syn-
chronisation of modules.

2 http://www.go-mono.org
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Ella provides specific features for self-awareness and self-expression in various
aspects described in Table 11.1. In an application which uses Ella, the nodes can
communicate without any concerns on the communication channel. The middleware
system cares about message and data delivery and additionally enables application-
specific 1:1 messages.

Further, Ella enables context-awareness, reacting properly when the network is
congested. It informs the appropriate publisher that it is congesting the network. The
application developer can than decide what to do with this information. In the case
of a VSN application, the cameras may reduce the resolution or the frame rate to
achieve a continuous and reliable image stream without congesting the network.

Ella inherently deals with modularised applications since it connects individual
modules by address-free communication mechanisms. Hence, a module does not
need to have any reference to another module in order to exchange data. In addition,
modules can start and terminate arbitrarily during application runtime. This not only
increases robustness to module failures, it also enables the exchange of specific
modules at runtime.

11.5.3 Ella in Practice

Fig. 11.4 The networked application consisting of PIR sensors, cameras, an authentication/autho-
risation module, door locks and ambient intelligence devices. Solid lines indicate published data,
dotted lines indicate one-to-one messages.

Using the example introduced in Section 11.1.2 we now show how a self-aware
application can be realised using Ella. We assume all components of the system to
be on individual nodes. Figure 11.4 shows the architecture of the application.

PIR sensors act as pure publishers. Whenever a PIR sensor detects motion it will
publish a new event of type Movement.
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Cameras subscribe to this type of data. As soon as a camera receives this signal,
it will start to record and publish the data type Image.

The authentication/authorisation module is subscribed to Image and performs
face recognition. When it has received enough images from a camera, it sends a
unicast message back to the corresponding camera telling it to go back into sleep
mode and wait for the next Movement.

The lock in the door continuously publishes LockState information indicating if
it is closed or open. The authentication module sends a control message to the lock
to open it for an authorised user. Further, it publishes UserInformation to all devices
which are concerned with adapting to specific user needs. Ambient intelligence de-
vices like lighting controls, tablets, displays and others are subscribed to this data
type and use the received events to change their state or display specific information.

Using Ella in this application brings various advantages. First, the application is
very flexible in terms of data sources for stimuli input. As an example, also other
sensor types may publish Movement events which activate cameras. This may be
pressure mats on the floor or acoustic sensors. They can be integrated into the system
without changing the application. The same holds true for bringing new subscribers
into the system, a dedicated application part which consumes published data for
archiving purposes.

Second, the possibility to use control messages in addition to publishing data
enables feedback channels to publishers and interaction-aware behaviour of the ap-
plication. The authentication/authorisation module can use this feature to disable a
specific subset of cameras after an authentication fails and thus may record addi-
tional images of unauthorised persons.

Third, the subscription callback mechanism can be used by modules to dynam-
ically adapt their behaviour. As an example, the authentication module may also
subscribe to Fingerprint data. If it receives a subscription callback it knows that
there is a fingerprint reader in the system. Upon identifying a person it can then wait
for fingerprint information before authorising him.

11.6 Conclusion

This chapter provided an overview of distributed self-aware computing systems and
and how middleware systems can support their development. Distributed SACS have
additional requirements concerning communication, robustness and scalability as
well as architectural primitives of self-aware applications.

A categorisation of middleware systems into host-centric and content-centric sys-
tems and their abilities to support SACS were presented. The publish/subscribe
paradigm was discussed as a solid basis for a self-aware application since it en-
ables decoupling of components along with scalability and robustness. However, it
does not support all self-awareness aspects that can be emphasised by a middleware
system.
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We introduced Ella, a hybrid middleware system based on a distributed publish/-
subscribe implementation and enhanced with additional concepts. Ella combines the
best of different middleware paradigms in terms of self-awareness support. For our
discussion, we used an example application to describe a possible implementation
of a distributed SACS.
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dersson, J., Giese, H., Gäschka, K.M.: On patterns for decentralized control in self-adaptive
systems. In: R. Lemos, H. Giese, H. Müller, M. Shaw (eds.) Software Engineering for Self-
Adaptive Systems II, Lecture Notes in Computer Science, vol. 7475, pp. 76–107. Springer
Berlin Heidelberg (2013)

413. Wikipedia: Adaptation (computer science). http://en.wikipedia.org/wiki/Adaptation. (Ac-
cessed March 8, 2016)

414. Winfield, A.: Robots with internal models: a route to self-aware and hence safer robots. In:
J. Pitt (ed.) The Computer After Me. Imperial College Press / World Scientific Book (2014)

415. Wolf, W., Ozer, B., Lv, T.: Smart Cameras as Embedded Systems. IEEE Computer 35(9),
48–53 (2002)

416. Wright, M.: Open Sound Control: an enabling technology for musical networking. Organised
Sound 10(3), 193–200 (2005)

417. Xiao, L., Zhu, Y., Ni, L., Xu, Z.: GridIS: An Incentive-Based Grid Scheduling. In: Proceed-
ings of the 19th IEEE International Parallel and Distributed Processing Symposium, p. 65b
(2005). DOI 10.1109/IPDPS.2005.237

418. Xilinx: SDAccel Development Environment. http://www.xilinx.com/products/design-
tools/sdx/sdaccel.html. (Accessed March 8, 2016)

419. Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing:
A review. Pervasive and Mobile Computing 8(1) (2012)

420. Yiannacouras, P., Steffan, J.G., Rose, J.: VESPA: portable, scalable, and flexible FPGA-
based vector processors. In: Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, pp. 61–70 (2008)



322 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

421. Yilmaz, A., Javed, O., Shah, M.: Object Tracking: A Survey. ACM Computing Surveys
38(4), 1–45 (2006)

422. Yin, F., D., M., Velastin, S.: Performance evaluation of object tracking algorithms. In: Pro-
ceedings of the International Workshop on Performance Evaluation of Tracking and Surveil-
lance (2007)

423. Yin, L., Dong, M., Duan, Y., Deng, W., Zhao, K., Guo, J.: A high-performance training-free
approach for hand gesture recognition with accelerometer. Multimedia Tools and Applica-
tions pp. 1–22 (2013)

424. Yu, X., Tang, K., Chen, T., Yao, X.: Empirical analysis of evolutionary algorithms with im-
migrants schemes for dynamic optimization. Memetic Computing 1(1), 3–24 (2009)

425. Zadeh, L.: Optimality and non-scalar-valued performance criteria. IEEE Transactions on
Automatic Control 8(1), 59–60 (1963)

426. Zagal, J.C., Lipson, H.: Towards self-reflecting machines: Two-minds in one robot. In: Ad-
vances in Artificial Life. Darwin Meets von Neumann, Lecture Notes in Computer Science,
vol. 5777, pp. 156–164. Springer (2011)

427. Zambonelli, F., Bicocchi, N., Cabri, G., Leonardi, L., Puviani, M.: On self-adaptation, self-
expression, and self-awareness in autonomic service component ensembles. In: Proceedings
of the Fifth IEEE Conference on Self-Adaptive and Self-Organizing Systems Workshops
(SASOW), pp. 108 –113 (2011)

428. Zarezadeh, A.A., Bobda, C.: Hardware Middleware for Person Tracking on Embedded Dis-
tributed Smart Cameras. Hindawi International Journal of Reconfigurable Computing (2012)

429. Zeppenfeld, J., Bouajila, A., Stechele, W., Bernauer, A., Bringmann, O., Rosenstiel, W.,
Herkersdorf, A.: Applying ASoC to Multi-core Applications for Workload Management. In:
C. Müller-Schloer, H. Schmeck, T. Ungerer (eds.) Organic Computing – A Paradigm Shift
for Complex Systems, Autonomic Systems, vol. 1, pp. 461–472. Springer Basel (2011)

430. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolution-
ary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation 1(1),
32–49 (2011)

431. Ziliani, F., Velastin, S., Porikli, F., Marcenaro, L., Kelliher, T., Cavallaro, A., Bruneaut, P.:
Performance evaluation of event detection solutions: the CREDS experience. In: Proceedings
of the International Conference on Advanced Video and Signal Based Surveillance, pp. 201–
206 (2005)

432. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithm: Em-
pirical Results. Evolutionary Computation 8(2), 173–195 (2000)

433. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Proceedings
of the International Conference on Parallel Problem Solving from Nature (PPSN), vol. 3242,
pp. 832–842 (2004)

434. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary
Algorithm. Tech. Rep. 103, Computer Engineering and Networks Laboratory (TIK), Swiss
Federal Institute of Technology (ETH), Zurich (2001)

435. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and
the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–
271 (1999)

436. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assess-
ment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolution-
ary Computation 7(2), 117–132 (2003)




