
Chapter 11
Middleware Support for Self-aware Computing
Systems

Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

Abstract The implementation of a distributed self-aware computing system (SACS)
typically requires a substantial software infrastructure. A middleware system with
dedicated services for self-awareness and self-expression can therefore support the
development of SACS applications. In this chapter we show the advantages of using
a middleware system as the basis for a self-aware computing system. We identify
requirements for middleware systems to support the development of self-aware ap-
plications. By providing facilities for communication, decoupling and transparency,
middleware systems can provide essential features needed in SACS. We compare
different middleware paradigms and their suitability to support self-awareness in
distributed applications. We argue that the publish/subscribe paradigm is very well
suited for this application area since it supports modularisation and decoupling.
Units can be added to and removed from existing applications and may well be
reused in new applications. Thus, SACS can be constructed by recombining exist-
ing publish/subscribe modules. In addition, we present details of publish/subscribe
and introduce our middleware implementation called Ella. We describe how differ-
ent aspects of a SACS and patterns for self-aware applications can be represented
using Ella. We present different communication paradigms in Ella (broadcasting,
peer2peer) as well as decoupling mechanisms provided by the middleware. We ar-
gue that SACS applications can be developed (i) faster, (ii) more efficiently and (iii)
more reliable with Ella. Finally, Chapter 13 presents a self-aware and self-expressive
multi-camera application which has been implemented with Ella.

Jennifer Simonjan
Alpen-Adria-Universität Klagenfurt, Austria, e-mail: jennifer.simonjan@aau.at

Bernhard Dieber
Alpen-Adria-Universität Klagenfurt, Austria, e-mail: bernhard.dieber@counity.at

Bernhard Rinner
Alpen-Adria-Universität Klagenfurt, Austria, e-mail: bernhard.rinner@aau.at

215

rinner
Schreibmaschinentext
This chapter is part of the book: P.R. Lewis, M. Platzner, B. Rinner, J. Tørresen, X. Yao (Eds.) Self-aware Computing Systems - An Engineering Approach. Springer 2016. pp 215-238. http://link.springer.com/chapter/10.1007/978-3-319-39675-0_11

rinner
Schreibmaschinentext

rinner
Schreibmaschinentext

rinner
Schreibmaschinentext

rinner
Schreibmaschinentext

rinner
Schreibmaschinentext

http://link.springer.com/chapter/10.1007/978-3-319-39675-0_11


216 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

11.1 Introduction to Middleware Systems

Self-aware computing systems (SACS) [310, 212, 241] are often distributed systems
i.e., networked computing systems running on multiple network nodes. Distributed
applications are inherently more difficult to design, develop and maintain than appli-
cations running on single nodes. This is also true for distributed SACS. Middleware
systems are therefore employed in networked application architectures to ease the
development by abstracting parts of the networking from the application. These con-
cepts can also be reused in the context of SACS. However, for self-aware computing
we see additional requirements for a middleware system.

In this chapter we look at different middleware paradigms and discuss their suit-
ability to support SACS. We show which middleware functions can support architec-
tural primitives of self-aware systems and focus on the publish/subscribe paradigm.
Further, we present a specific implementation—the Ella middleware [100]—and de-
scribe how its properties can support the development of distributed SACS.

11.1.1 Middleware Basics

A middleware system is a software layer which is located between the operating
system and the application. Therefore, it serves as a bridging layer connecting dis-
tributed applications. Middleware thus provides similar services as an operating sys-
tem but for distributed applications rather than for a single computer. The distinction
between operating system and middleware functionality is, to some extent, arbitrary.
While core kernel functionality can only be provided by the operating system itself,
some functionality previously provided by dedicated middleware systems has been
integrated into operating systems nowadays. A typical example is the TCP/IP stack
for networking, nowadays included virtually in every operating system. As shown
in Figure 11.1, every device in a network runs middleware which is located between
the application and the transport layer. The logical communication is established be-
tween the corresponding layers of different devices and is depicted by the horizontal
dashed lines. The physical communication takes place in a vertical manner through
the communication stack of the devices and is depicted by the solid lines.

In a distributed system, the applications typically face heterogeneity in multiple
dimensions. Such applications run on different physical locations, using different
hardware platforms, networking technologies, operating systems or programming
languages. A middleware system provides services for a distributed execution of
applications and therefore eases the application development. Key aspects are hiding
the complexity and heterogeneity of a distributed system and providing a messaging
service that enables communication across all platforms within the system. A further
important aspect of middleware systems is reusability.

An example of modern heterogeneous systems is a smart environment applica-
tion. Smart environments are typically composed of different sensors, such as visual,
acoustic or infrared sensors [278, 332]. In these networks, each node performs local



11 Middleware Support for Self-aware Computing Systems 217

Device 1 Device 2 Device 3

Application

Middleware

Transport 

Internet

(Wireless) Network

Application

Middleware

Transport 

Internet

Application

Middleware

Transport 

Internet

Fig. 11.1 Layered network architecture of multiple devices in a network

actions such as sensing and global actions including communication and coopera-
tion with neighbouring nodes.

Summarised, a middleware system should provide the following functionalities:
(i) hiding distribution, (ii) hiding heterogeneity and low-level details, (iii) provid-
ing uniform language and platform-independent interfaces to application develop-
ers, (iv) providing common services such as messaging. Applying the design pat-
terns presented in Chapter 5, middleware can support an application in accessing
external sensors and activating external actuators. Depending on the paradigm, mid-
dleware can also provide support in implementing self-awareness principles and
self-expressive behaviour. The reference architecture introduced in Chapter 4 can
be implemented by means of a middleware system if it is realised as a distributed
application.

11.1.2 Application Example of a Distributed Self-aware
Computing System

To explain SACS and middleware usage in such systems, we introduce a sensor
network example. A distributed sensor network consists of various sensors and ac-
tuators which have some communication capabilities. There is no central entity con-
trolling the network nodes. The actions taken by nodes rely on environmental infor-
mation and on interaction with local neighbours. Sensors capture certain events (i.e.,
light intensity, temperature) and push them as stimuli into the application. This can
mean either that the sensor uses this data itself to change its own behaviour or that
it informs other nodes in the network (i.e., by a broadcast).

We use a sensor network within a smart environment as an example. It is respon-
sible for controlling the access of persons to rooms within a building. In addition,
it informs the infrastructure within a room of who has entered it, in order to al-



218 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

low the smart environment to adapt to specific users. It consists of passive infra-red
(PIR) sensors, RGB cameras, an authentication/authorisation node as well as actua-
tors which control door locks. To save resources and to minimise privacy invasion,
the RGB cameras are in standby by default, where they do not record any images.
Whenever a PIR sensor in front of a door recognises movement, it sends out a mes-
sage which activates all corresponding cameras. They will start to stream images
which are processed by the authentication/authorisation node. There, face recog-
nition algorithms are used to determine if the person is allowed to access a certain
room. If a face has successfully recognised, the sensor network will instruct the door
locks to open. In addition, the smart environment within the room may adapt to the
newly entered user by adapting the lighting or switching on devices. Which adap-
tation is performed depends on the devices in the room and the profile of the user.
Figure 11.2 shows a visualisation of the example application using the reference
architecture introduced in Chapter 4.

DoorMlock
Lock
Sensor

Lock
motor

Lock
Status

UnlockM
cmdSelf-awareness

PIRMsensor
Sensor

Stimulus-
Awareness

Self-expression
Wake-upM
signal

Camera
CMOSM/
CCD

Shutter Image

Wake-upM
signal

Authentication

Identity

Authorisation

UnlockM
cmd

IdentityMovement Self-awareness

Stimulus-
Awareness

Self-expression

Self-awareness

Interaction-
Awareness

Stimulus-
Awareness

Self-expression

Self-awareness

Stimulus-
Awareness

Self-expression

Image

Self-awareness

Interaction-
Awareness

Stimulus-
Awareness

Self-expression

Time-
Awareness

Fig. 11.2 Visualisation of the example application using the reference architecture introduced in
Chapter 4

The PIR sensor detects movement in the environment with its external sensors.
Upon a movement detection, the self-awareness module of the PIR sensor is in-
formed by the sensors. This module is the prerequisite for self-expression capabili-
ties, which allow a node to react properly to certain events. Thus, the self-expression
module is responsible for deciding on how to act based on learnt models. In the
case of the PIR sensor, this module issues a wake-up signal in order to inform the
appropriate cameras of a movement in their area of interest. The wake-up signal
received by a camera triggers its self-awareness module. Since cameras are aware



11 Middleware Support for Self-aware Computing Systems 219

not only of stimuli from the environment but also of stimuli from other agents, they
are stimulus- as well as interaction-aware. The self-expression module of a camera
reacts properly by starting to stream images to the authentication node. This node
performs a face detection and forwards the identity information to the authorisa-
tion node, which decides if a door should be unlocked. If so, it issues an unlock
command which is received by the door lock node. The door lock node is also time-
aware, since it is able to lock an unlocked door after a certain time period. The
self-expression module of the door lock node decides on the lock status of the door
based on the learnt knowledge.

This application poses several challenges and can profit from SACS design prin-
ciples. First, there are components with different purposes which change their states
based on input from internal and external sources. Second, time dependencies exist
in this system (e.g., biometric information must be current in order to open the door
for the right person). Third, the various components should not constantly poll their
data producers for recent data. Instead, new data should be provided in a push-based
manner.

This networked application can be supported by a middleware system. First,
multiple networked devices have to be connected to an integrated system. Second,
the same application may run in different infrastructural circumstances, i.e., some
rooms may not have PIR sensors (requiring the cameras to run permanently) or
there may be additional authentication devices such as fingerprint or card readers.
Further, different smart environment devices need to react differently to new per-
sons. This requires the application to adapt and scale. Most of those circumstances
can be hidden to the application using a middleware system. Finally, networked
applications are typically rather communication intensive. Middleware reduces the
amount of time required to implement such an application and can also be used to
transparently incorporate different networking technologies like WiFi and ZigBee.
In addition, middleware systems which provide space decoupling (i.e., hide the ex-
act location of application modules) enable a restructuring of the application to a
single node without programming effort.

We will use this application scenario consistently throughout this chapter to ex-
plain self-awareness requirements, middleware paradigms and implementation con-
cepts.

11.2 Middleware Requirements

In order to be useful for distributed applications, a middleware system must sat-
isfy several general requirements. First, it must provide meaningful services to the
application (e.g., communication and access to data). Second, it must be flexible
enough to allow for application restructuring and quick exchange of functionality.
Thus, applications should be constructed from several modules or plug-ins. Further,
the middleware system should provide mechanisms to decouple individual modules,
i.e., make them independent from each other wherever possible. Also, a middleware



220 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

system should ease application development by hiding complexity regarding hetero-
geneous hardware or networks. As an example, the size of a network can be hidden
by a middleware system, i.e., a developer should not be concerned if the application
runs on two or twenty nodes. Thus, a middleware system must transparently adapt
its operation according to the network size. This also includes changing the network
size, i.e., when nodes join or leave the network during the application runtime.

Finally, it is required that the middleware system be simple, both in structure and
usage. This reduces the effort for understanding and using its concepts in developing
applications, makes the execution faster and eases maintenance.

Distributed self-aware computing systems pose additional requirements to a mid-
dleware system. While it is not required for the middleware itself to be self-aware, it
should support the application in being self-aware. It must provide facilities which
make it easy for developers to asses the self-state of the system and to express it in
the application behaviour.

We derive feature requirements for a SACS-supporting middleware from the ar-
chitectural primitives (see Chapter 12) of a self-aware computing system as shown
in Table 11.1.

Table 11.1 Middleware requirements derived from SACS architectural primitives

Architectural primitive Supporting middleware feature

stimulus-awareness Ability to push a new stimulus to the application

interaction-awareness Ability to enable the application to participate in interactions with other
application parts

time-awareness Ability to relate stimuli or events to time instances or knowledge of his-
torical/future phenomena

self-expression Ability to re-route and modify data flows and ability to be split into com-
ponents and exchange modules during runtime

For stimulus-awareness, the application needs a comfortable way to receive a
stimulus. For a video-processing application, this might be a new image coming
from a camera. Thus, a middleware system should provide a mechanism to push
stimuli into the application or actively notify the application of a new stimulus.

To support interaction-awareness, the middleware system should make it easy
for the application to participate in interactions like auctions, communication groups
and multicast channels. This includes easy dissemination of messages and data and
push-based message and data reception. Therefore, nodes need to know with whom
they are communicating.

Supporting time-awareness means providing time information to the application.
This can be done in various ways and on different levels: (i) time-stamping events,
(ii) keeping the intervals between events proportional to the real time intervals, (iii)
temporally ordering events and (iv) maintaining knowledge of historical data or pre-
dicting future phenomena. A middleware system can support each of these levels.
For time-stamping the middleware system could by default add a header including



11 Middleware Support for Self-aware Computing Systems 221

a time-stamp to each application message. Keeping the right time intervals and en-
abling temporal ordering would require the middleware system to buffer messages.
To increase knowledge of historical data, the middleware system needs to store past
events and enable nodes to access this data. Additionally, many distributed applica-
tions should run without any synchronisation. This means that the interacting par-
ties do not need to be actively participating in the interaction at the same time. The
middleware system should therefore support unsynchronised communication and
interaction (known as time-decoupling).

Self-expression allows a node to take actions appropriate for learnt models or
knowledge. A middleware system can support the application in re-routing data
flows or by activating and deactivating system parts based on self-awareness. The
latter can be realised in middleware systems which support a developer in modular-
ising an application and thus make it easy to exchange modules at runtime.

Summarised, developing a distributed SACS application can be noticeably sim-
plified by the support of a middleware system. At start-up of the application,
node discovery is the main issue. A middleware system should take care of dis-
covery of neighbouring nodes to enable later interaction between them and sup-
port interaction-awareness. Further, the middleware system should take care of the
communication—forwarding of messages/events, communication channel, buffer-
ing of messages, etc. Taking care of delivery of messages and events means sup-
porting stimulus-awareness of the application. In the sense of time-awareness, a
middleware system could take care of temporal ordering of events (lowest form of
time-awareness) or time-stamping of application messages (highest form of time-
awareness). Also, self-expression can be supported by a middleware system.

11.3 Middleware Paradigms

Keeping the design issues and application goals in mind, middleware systems have
to fulfill certain requirements in order to be useful in developing SACS. We classify
middleware systems into the following two approaches: host-centric and content-
centric systems.

A host-centric middleware system allows distributed applications to exchange
general-purpose messages between specified hosts. This is used to remotely call
functions, transport data and send notifications to known hosts. A key aspect of
host-centric approaches is that for a single call typically there is a single previ-
ously known remote host. Those kinds of systems were originally intended to sup-
port only synchronous communication. However, language-specific extensions also
allow asynchronous communication. Message delivery is enabled by knowing the
host to communicate with and is ensured using reliable message queues.

In content-centric middleware, the nodes or applications are interested in spe-
cific data, rather than in the origin or sink of the data. A producer publishes data
by making it accessible to the other nodes of the network. Consumers interested in
this type of data can then consume the data. Content-oriented systems rely on asyn-



222 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

chronous communication, which means that processes do not need to be blocked
while waiting for a reply. Using this approach, senders have no guarantee that their
messages are read and no indication in the transmission time. The main advantage is
that communication can be realised in either a one-to-one or a one-to-many manner,
whereby neither producers nor consumers care about that.

11.3.1 Host-Centric Middleware

Host-centric systems are interested in the host they are communicating with. Those
systems typically support synchronous communication with a possible extension
to asynchronous communication. In synchronous communication, the sender is
blocked until a reply message is received. This means that the sender cannot ex-
ecute any other functions while waiting for a reply. Further, connection overhead
is introduced, since each call requires, for instance, marshalling (transformation of
the stored object to data which is suitable for transmission). Another drawback is
that senders need to know receivers and their locations or addresses in advance. Us-
ing asynchronous communication, sender and receiver are loosely coupled, meaning
that a sender continues its work after sending a message. When the call returns (i.e.,
it has been processed on the remote host), the sender can collect the return value.

11.3.1.1 Remote Procedure Calls (RPCs)

A well-known example of host-centric middleware systems is the so-called remote
procedure call (RPC) [300]. RPC enables the invocation of a procedure or function
on a remote node in the same way local procedures are called (as if they belong to
the same process). RPC uses synchronous communication, meaning that the calling
process blocks until the remote procedure replies to the call. Changing interfaces
of procedures on one side will therefore result in the need for changes of the calls
to the procedures, making RPC inflexible. A remote procedure call is a one-to-one
communication, i.e., to call a procedure on multiple remote hosts, multiple calls are
necessary. RPC calls work similarly to local function calls: the calling arguments
are passed to the remote procedure and the caller waits for a response. A remote
procedure needs to be uniquely identifiable within the whole network. An example
implementation of RPC is the so-called message passing interface (MPI). In MPI,
the sender sends a message to a process rather than invoking a function directly by
name. This standard defines syntax and semantics of core library routines to ease ap-
plication development. It supports one-to-one as well as collective communication
and is the most widely used model in high-performance computing.



11 Middleware Support for Self-aware Computing Systems 223

11.3.1.2 Object-Oriented Middleware (OOM)

Object-oriented middleware systems extend the pure method-oriented concepts of
RPC to object-oriented programming. Here, not only a functional interface but
whole objects are provided to a remote interaction partner. Within an object-oriented
language, remote and local objects can ideally be used in the same way.

Prominent implementations of OOM systems are CORBA, JavaRMI, SOAP and
.NETRemoting. Common Object Request Broker, known as CORBA [401], allows
method calls between application objects of different applications. CORBA hides
the complexity of different operating systems and hardware platforms from the ap-
plication developer, enabling an easier development of distributed applications. An
interface definition language (IDL) is used to specify the interfaces represented by
objects to the network. Mappings from IDL to programming languages such as Java
or C++ are also specified by CORBA. CORBA data such as integers or arrays are
passed by value, while CORBA objects are passed by reference. Although CORBA
supports flexible data types, data-by-value passing enforces strong data typing. Ob-
ject Request Broker is the essential concept used by CORBA. ORB allows clients to
make requests for services without the knowledge of the server’s location or inter-
face. To enable correct delivery of messages and replies, the IIOP protocol is used.
The Internet Inter-ORB Protocol (IIOP) enables applications of different nodes and
different operating systems to communicate via the Internet.

Java Remote Method Invocation (JavaRMI) [357] performs the object-oriented
equivalent of RPC, with support for direct transfer of serialised Java classes and
distributed garbage collection. Like CORBA and JavaRMI, .NET Remoting [331]
allows an application to make an object available across remote boundaries, which
includes different application domains, processes or even computers connected by
a network.

11.3.1.3 Service-Oriented Architectures (SOAs)

Service-oriented architectures are a general pattern of structuring applications. Sin-
gle parts of applications are modelled as independent reusable services. Nowadays,
SOA is typically implemented using web technologies, but also other realisations of
this concept exist.

Simple Object Access Protocol (SOAP) [152] is a protocol specification for ex-
changing structured information in the implementation of web services in computer
networks. It uses the XML information set for its message format, and relies on
other application layer protocols, most notably hypertext transfer protocol (HTTP)
or simple mail transfer protocol (SMTP), for message negotiation and transmission.
A SOAP service typically provides a description of its methods and structures by
means of a WSDL document (web service description language) [75]. This enables
developer tools to generate client-side code for accessing a SOAP service automat-
ically, which results in less error-prone and faster development.



224 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

However, the use of XML as transport envelope results in a large overhead in
messages, thus making SOAP a technology rather unsuitable for embedded soft-
ware. REST web-services (representational state transfer) [135] have proven to
be a lightweight alternative to SOAP. REST uses standard HTTP methods such
as GET, POST, PUT, DELETE to communicate to a remote server (i.e., GET
is used to retrieve information, POST is used to send a certain payload, and so
on). Methods to invoke are identified by URL paths. As an example, GETing
http://www.myservice.com/Items would return a list of items available while POST-
ing to this URL may append one item. GETing http://www.myservice.com/Items-
/Item42 returns the item with index 42 while DELETEing would remove the corre-
sponding data package. The payload in REST communication is typically serialised
as XML or JSON data (Java Script Object Notation [86]). The advantage of REST
is that nearly every connected device and platform has HTTP-accessing capabilities.
Today, REST is the main communication paradigm used in smartphone apps.

11.3.1.4 Consequences of Host-Centric Middleware Systems for the
Application Example

For a demonstrative explanation, we refer you to the example described in Sec-
tion 11.1.2. Using a host-centric middleware system, the sensors need to be able to
address the nodes they want to communicate with. If they want to share sensed data,
they have to directly transmit them to a specific receiver. If synchronous communi-
cation is used, the sender is blocked until a response is received. This means that the
sending node cannot continue sensing during message exchange. If for instance a
PIR sensor wants to notify other parts of the system about detected motion, it needs
to know the receivers and their addresses in advance. In this case, an application
extension from cameras to cameras and audio sensors would explicitly affect the
behaviour of PIR sensors.

The discovery of newly joining nodes is cost intensive, since those nodes have to
distribute their address/location through the whole network and need to learn those
of neighbouring nodes. Referring to our application example, supporting a changing
smart environment within a room is cost-intensive (e.g., various devices are active
at different times of the day, which is rather complicated to realise).

An RPC-based implementation of a sensor network first requires a definition of
the functional interface of each node (i.e., the procedures available to be called by
remote nodes). Further, the application needs mechanisms enabling nodes to find
addresses of remote nodes. In a rather static network, this can be achieved by pre-
defined host lists. Dynamic networks, in which nodes may join or leave, require
a discovery mechanism or a centralised lookup registry (a previously known host
where nodes can register on start-up and look up addresses of other nodes).

In an object-oriented implementation of our example sensor network, the mid-
dleware system first needs to define the object structures. Then the node addresses
need to be resolved either by registry or pre-definition.



11 Middleware Support for Self-aware Computing Systems 225

A sensor network which uses REST services in communication requires each
sensor to run an HTTP server in order to receive incoming stimuli. A well-defined
set of REST API calls has to be known already at design-time. To push a stimulus
to multiple nodes, multiple HTTP requests have to be performed. This is hardly
feasible for communication between all sensor nodes but may make sense in case
multiple sensors report to the same sink node.

Summarised, host-centric systems were intended for synchronous operations
which require sender and receiver to know each other and to block senders during
data transfer. Further, synchronous operations support only one-to-one communica-
tion. Neighbour discovery is rather expensive as we can see on the example of REST,
where services can only be accessed using fixed URLs. The benefit is the intuitive
and transparent usage. Host-centric systems also support SACS in certain aspects.
A detailed description of awareness requirements which are fulfilled by host-centric
systems can be found in Section 11.3.3.

11.3.2 Content-Centric Middleware

In content-centric middleware systems, sending and receiving messages is not the
central architectural viewpoint. Instead, the focus lies on accessing data indepen-
dently of who is producing and who is consuming it. Typically, a data-oriented
middleware system is used to transparently decouple content sources and content
sinks (producers and consumers). While also host-centric paradigms are used to ex-
change data, they typically assume that the location of this data is known in advance
(i.e., the URL of a SOAP service). In addition, they typically lack the capabilities to
deal with multiple producers (i.e., multiple nodes would host a certain web service)
compared to content-centric systems. Content-centric middleware systems can be
realised in either a centralised or a distributed way.

11.3.2.1 Blackboard Systems

A blackboard system is a centralised content-centric middleware solution. Black-
board systems are distributed implementations of Linda spaces [8], where multiple
processes exchange data via a centralised tuple matching system. In this approach,
a producer provides its data by releasing it to a central point in the network (pub-
lishing the data on a blackboard). Consumers that are interested in that type of data
can simply collect the data from the central point. A prominent example is the so-
called tuple space. A tuple space can be interpreted as a distributed shared memory.
It provides a repository of tuples that can be accessed concurrently. Producers post
their data as tuples in the space, and the consumers then retrieve data from the space
that match a certain pattern.



226 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

11.3.2.2 Message Queuing

Message queuing is another centralised host-centric middleware paradigm which
uses the message queuing principle. Message queuing enables asynchronous com-
munication and provides decoupling of senders and receivers, allowing them to be
active at different times. Senders place their messages at a central point in a mes-
sage queue, where they are stored until the receiver collects them. Since such a
queue has restrictions on size, the number of messages in the queue and the size
of messages are limited. Message queuing is a programming pattern allowing asyn-
chronous applications in a distributed system to communicate with each other via
message queues. A queue manager and the queues reside on a server node. Appli-
cation nodes can send or receive messages only from message queues belonging to
queue managers to which they are connected.

Message queue telemetry transport [26], known as MQTT, implements the mes-
sage queuing pattern. MQTT is used for the transport of telemetry data and is well
suited for wireless sensor networks or mobile-to-mobile communication since it is
very lightweight [188]. In MQTT, the sender continuously transmits its sensor data
to the message broker. Nodes which are interested in this kind of data collect it from
the message broker. MQTT runs on connection-oriented transport (TCP).

11.3.2.3 Publish/Subscribe

Publish/subscribe [126] systems work in a similar way as blackboard systems do,
especially if they are realised as a centralised solution. Publishers offer data and sub-
scribers show interest in specific data by subscribing to that type of data. Thereby,
publishers publish their data without any knowledge of the sink, and subscribers
consume data without knowledge of the source. However, an important difference
with blackboard systems is that in publish/subscribe the middleware system pushes
data to subscribers whereas in a blackboard they have to pull data on demand. Pub-
lish/subscribe can be realised in a centralised as well as a distributed manner. In
the centralised solution, a central unit is in charge of matching publishers with sub-
scribers. The distributed solution does not need any central node to publish the data
to or consume the data from. The middleware system is in charge of delivering the
data to subscribers of matching data type. A detailed explanation of publish/sub-
scribe can be found in Section 11.4.

11.3.2.4 Consequences of Content-Centric Middleware Systems for the
Application Example

Referring to the example in Section 11.1.2, a sensor network based on the black-
board concept or on a message queue requires a central node. The blackboard sys-
tem or the message queues and the queue manager would reside on this central
node, which is responsible for delivering messages or data to the appropriate re-



11 Middleware Support for Self-aware Computing Systems 227

ceivers. Thus, every node within the network has to communicate with the central
node if it wants to interact with other nodes of the network. The central node may
thus become a bottleneck of the system. In the case of message queuing, there has
to be a queue for PIR notifications, a queue for camera images, a queue for autho-
risation information and a queue for user information. If the application is extended
to more devices, they can use the already existing queues as input and define their
own queues as output.

In publish/subscribe, there may or may not be a central entity, depending on the
implementation. In any case, nodes only need to indicate their interest in specific
data in order to start receiving it. However, without additional meta-data or mid-
dleware functionality, the node may not be able to distinguish between data of the
same type received from different publishers. As an example, devices which want to
process user information subscribe to this type of data and the middleware system
will take care of finding suitable publishers and data transport.

Summarised, in content-centric middleware systems the focus lies on the data it-
self rather than on the data source or sink. This enables decoupling of data producers
and consumers. Further, communication can be done in a one-to-one or one-to-many
manner, since the data producers are not interested in who is consuming the data.
As with host-centric systems, content-centric systems also support several SACS
aspects, which can be found in Section 11.3.3.

11.3.3 Requirements Conformity of Middleware Paradigms

Table 11.2 shows which awareness requirements are fulfilled by the different types
of middleware systems.

All middleware paradigms support stimulus-awareness whenever they push data
into an application module. Using host-centric middleware, such as RPC, OOM and
SOA, nodes have to directly address other nodes in order to push a new stimulus.
In content-centric middleware concepts, nodes push their stimuli to the network
by offering it to other nodes. Nodes which are interested in the information can
then collect it. Since one of the main features of middleware systems is to provide
communication and data exchange facilities to distributed applications, this makes
them inherently interaction-aware.

Additionally to message exchange, a middleware system also enables nodes to
express their selves. Host-centric paradigms explicitly model the data flow (they
directly address each host) and can thus easily change this flow based on the self-
awareness state. Data-centric approaches provide facilities to change the data pro-
duced and consumed by application modules and thus enable a change in the ap-
plication behaviour. This means both types of middleware support applications
in changing their behaviour based on the self-awareness state and are thus self-
expressive.

Host-centric middleware solutions are not time-aware, since they typically do not
care about time-stamping, temporal ordering of events or time-decoupling. How-



228 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

ever, content-centric solutions can support time-awareness in different ways. Pub-
lish/subscribe and message queuing systems can support time-awareness. In both
paradigms, messages can be buffered in queues. This means they can be delivered
in right intervals and/or in temporal order. A similar explanation holds for black-
board systems, since the data is stored at a central point where it can be buffered or
time-stamped.

Interaction-awareness is supported by all host-centric middleware systems, since
they need to know the host they are communicating with. In content-centric mid-
dleware systems, senders and receivers do not know each other, since they are only
interested in the data which is exchanged. Without knowing other nodes, a sender
is not able to interact with one specific node. Thus, content-centric solutions do not
directly support interaction-awareness. To enable the application to participate in
interactions with other application parts, a content-centric middleware system re-
quires an additional communication channel. This channel could then be used by
nodes to interact with specific neighbours.

Table 11.2 Support for awareness primitives in various middleware paradigms

SA/SE Primitive RPC OOM SOA Blackboard Message queuing Pub/Sub

stimulus-aware 3 3 3 3 3 3

interaction-aware 3 3 3 7 7 7

time-aware 7 7 7 3 3 3

self-expression 3 3 3 3 3 3

11.4 Publish/Subscribe

In this section we present the publish/subscribe paradigm in more detail to show
how it can support SACS.

The publish/subscribe paradigm is a type of content-centric middleware, defin-
ing two different roles: a publisher and a subscriber. Publishers are modules which
produce data (e.g., capturing images or fetching data from a specific source) to then
pass it on to consumers, the so-called subscribers, which process the data. A mod-
ule may be publisher and subscriber at the same time, i.e., it processes data from
another publisher and publishes the results itself.

Publish/subscribe is a mechanism which allows for elegant decoupling of func-
tional elements within applications. A component for publish/subscribe manage-
ment takes care of the decoupling. Instead of directly connecting the publisher and
subscriber modules, a publisher announces its events and a subscriber can announce
interest in certain types of events. The publish/subscribe management takes care of
matching published events and subscriptions and is also responsible for delivering



11 Middleware Support for Self-aware Computing Systems 229

the published data to all interested subscribers. This means that publishers provide
their data to the network, rather than sending their events to specific receivers.

A key requirement of publish/subscribe is that neither publishers nor subscribers
need to be aware of each other. A publisher does not need to keep track of where
its data is sent and how many subscribers exist for its events, and a subscriber does
not need to care about where publishers are located and where their data is coming
from (i.e., the local node or a remote node). All this is transparently handled by the
publish/subscribe middleware system.

In the case of a centralised publish/subscribe solution, the publish/subscribe man-
agement resides on the central node. We prefer a decentralised solution since cen-
tralised networks are hardly scalable. Figure 11.3 illustrates a distributed publish/-
subscribe architecture, where a small publish/subscribe management component re-
sides on each node in the network and is responsible for its local modules and for
connecting them to remote nodes.

Local 
Publish/subscribe

Manager

Publisher

Subscriber

Network Node

Publish

Subscribe

Unsubscribe

Notify

Discover
Subscribe

Unsubscribe
Notify

Fig. 11.3 A simple distributed publish/subscribe system. Each node keeps track of other nodes and
subscriptions in the network.

The publish/subscribe management is responsible for notifying subscribers when-
ever data of their interest is published. To enable these notifications in this many-
to-many interaction, publish/subscribe relies on asynchronous communication. The
messaging model of publish/subscribe systems is very powerful, connecting senders
and receivers of messages anonymously. It provides many-to-many and one-to-
many interaction, enabling a sender to send its messages to either one or multiple
receivers. There is no restriction on the role of a node within a publish/subscribe
system. Each node can be a publisher, a subscriber or both.



230 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

There are three methods that are typically provided by a publish/subscribe mid-
dleware system: subscribe(), unsubscribe() and publish(). The subscriber calls the
subscribe() method to show its interest in specific event data and the unsubscribe()
method whenever it is no longer interested in this data. The publish() method is
called by publishers to notify that there is new event data ready to be offered to sub-
scribers. To enable the matching of published events and subscriptions without the
need for the source to know the sink and vice versa, different subscription schemes
had been defined. Those are explained in the following section.

11.4.1 Publish/Subscribe Flavours

Since subscribers are usually interested in some specific events, rather than in all
events, a way of defining different events is required. Three different schemes can
be used to define event classes, typically called subscription schemes.

11.4.1.1 Topic-Based Publish/Subscribe

Events in a topic-based scheme are defined by specific keywords, e.g., the name of
the topic. This means that publishers publish events of a particular topic and all sub-
scribers interested in this topic receive these events. The communication between
publishers and subscribers is done via messages, including the command, the topic
name and the event data. Thus, each topic can be seen as event service, offering
a publish() and subscribe() method for its own specific topic. Topic-based publish/-
subscribe is a rather static scheme with limited expressiveness, but can be efficiently
implemented [126].

11.4.1.2 Content-Based Publish/Subscribe

Events in a content-based scheme are defined by its content, e.g., its properties. This
means that subscribers subscribe to content (properties of an object) they would like
to receive rather than to a topic name. Events are thus not predefined by keywords,
which makes the scheme dynamic. Properties can be internal attributes or meta-data
related to events. Subscribers subscribe to an event by typically using a key-value
pair. Furthermore, some systems provide a mechanism for event correlation. In these
systems, subscribers can subscribe themselves to different combinations of events
and are only notified by the event service if this combination of events is provided
by the publishers.

In the case of content-based publish/subscribe, the event service provides the
subscribe() method with an additional argument. This argument defines the content
to be subscribed to and can be either a string or a template object. By using template
objects, the subscriber provides an object that it is interested in and the event service



11 Middleware Support for Self-aware Computing Systems 231

notifies the subscriber only on occurrence of events of the same properties. The
advantage over topic-based publish/subscribe is that events are no longer bound to
fix criteria such as the topic name and that content-based publish/subscribe is highly
expressive.

11.4.1.3 Type-Based Publish/Subscribe

In a type-based scheme, subscribers express their interest in events by subscribing
to the type of an object. This scheme guarantees type safety at compile-time and
encapsulation, which is an advantage in implementation simplicity over the other
two schemes. By using public class members, type-based publish/subscribe would
transform into content-based publish/subscribe. However, in type-based publish/-
subscribe, private class members, which can only be accessed through public meth-
ods, are used.

11.4.2 Decoupling

A publish/subscribe system enables decoupling in the following dimensions:

• Space decoupling: Modules do not need to know where they and other mod-
ules are located in the network. This means that publishers do not hold any
references to subscribers and vice versa. In a visual sensor network (VSN), a
publisher of images does not need to care if they are delivered to one or more
displays or other modules.

• Time decoupling: Publishers and subscribers do not need to participate in an
interaction at the same time. The publisher might for instance publish an event
while there is no subscriber connected. Publishers which start after a subscriber
can still be matched to an earlier subscription request. In a VSN, cameras may
not start up at the same time; still, they must form one distributed application.

• Synchronisation decoupling: Preparing events does not block the publishers,
and subscribers can be notified of an event even though they are currently ex-
ecuting another activity. As an example, a publisher of images can capture the
next image while the current image is still being delivered to subscribers.

11.4.3 Publish/Subscribe for SACS

Publish/subscribe enables self-awareness and self-expression, making this paradigm
very suitable for SACS. As already described above, publish/subscribe supports an
application in being stimulus-aware, time-aware and self-expressive.

Subscriptions of data consumers enable private and public self-awareness. Nodes
perceive their environment and react properly by subscribing to specific information



232 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

and data. In tracking, for instance, a camera recognises whenever the object is going
to leave the FOV (private self-awareness). The camera may then decide to hand over
tracking responsibility to a neighbouring camera (public self-awareness).

By publishing data, self-expression is achieved. Since the publisher forgets about
the data as well as the publishing process after publishing, we call it fire-and-forget
self-expression.

11.5 Ella: A Publish/Subscribe-Based Hybrid Middleware

In the previous sections we have seen how different middleware paradigms can sup-
port different aspects of SACS. Of course, an application does not need to miss
self-awareness features which are not supported by the middleware. However, they
need to be implemented on the application layer.

In this section, we present a middleware implementation called Ella [100] which
is available as an open source project1. Ella is designed as a hybrid middleware
system combining features of host-centric and content-centric paradigms in order
to provide an improved basis for self-aware applications. Ella in its basics is a dis-
tributed publish/subscribe middleware system. However, additional features have
been added to allow for interaction- and self-awareness. Ella in its core builds on
decoupled modules which do not have direct references to each other. This modu-
larised architecture enables application modules to be exchanged at runtime.

11.5.1 Architecture

In this section, we present the architecture of the Ella middleware system. While
there are several paradigms for middleware systems, like RPC or OOM, we chose a
data-driven publish/subscribe approach. This allows for a high degree of flexibility
since it provides decoupling in space and time. In contrast to other publish/subscribe
implementations such as [388], Ella is completely distributed without the need for
any central coordination. The publish/subscribe implementation of Ella is explained
in the following sections.

11.5.1.1 Subscribing

Ella uses type-based subscriptions, which means that a subscriber specifies a cer-
tain data type to subscribe to. Additionally, Ella provides the possibility to request
a template object. The middleware system will then ask each publisher (which is
matching in type) to generate such a template object and will hand it to the prospec-

1 https://ella.codeplex.com/



11 Middleware Support for Self-aware Computing Systems 233

tive subscriber. The subscriber can then decide whether this specific publisher is
accepted or not.

In addition, upon subscribing, the subscriber can decide to exclude remote pub-
lishers to obtain only subscriptions from the local node. This can be useful whenever
node-specific information is requested, such as the current resource allocation.

Optionally, a subscriber can provide a callback method which is called whenever
it is subscribed to a new publisher. The subscriber will be provided with a handle
object which can be used to distinguish between multiple publishers but without
making them identifiable.

11.5.1.2 Publishing

A publisher publishes events of a certain data type, which is then matched to sub-
scribers by Ella. Similarly to subscribers, publishers can also provide callback meth-
ods which are called by Ella for each new subscriber to a certain event. Publishers
can use this information to publish certain information to only a subset of sub-
scribers. As an example, some subscribers to images of a camera may send an ap-
plication message to the publisher asking for a reduced frame rate. The publisher
can then publish at a lower rate to those subscribers which have requested this.

11.5.1.3 Realisation of Publishers and Subscribers

Creating a publisher or a subscriber for Ella is a straightforward task. Instead of
forcing developers to implement a specific class hierarchy (i.e., subclassing a base
class or implementing an interface), Ella uses code annotations to declare a certain
class to be a publisher or a subscriber. These code annotations can be reflected by
Ella at runtime to detect publishers and subscribers in code libraries. This approach
has several advantages. First, it makes it very easy to adapt existing code to run on
top of Ella. It basically requires annotating the existing code and adapting the way
of data passing to the mechanism provided by Ella. Second, it makes the develop-
ment of modules more flexible because developers are not bound to any inheritance
hierarchy and thus it is easier to integrate Ella into any software architecture. Third,
Ella-based code is easily readable and maintainable because the annotations directly
inform about what the specific module does.

11.5.1.4 Network Management and Remote Operation

To support a convenient way of developing and deploying software modules for Ella,
the middleware system provides a transparent node discovery mechanism which is
used to detect any running Ella instances on other nodes in the network. This relieves
the developer of the need for managing other nodes in the network. As soon as an
Ella instance is detected, it is registered as a known host and it will also be checked



234 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

for suitable publishers of events requested by local subscribers. With this approach,
it is much easier to scale an existing application without having to modify existing
code. As soon as Ella detects other instances, it will include them in its operation.

On start-up, Ella tries to first discover other nodes in the network. By default
discovery is realised with a UDP broadcast. This broadcast also contains connection
information necessary to address this node in the network. However, this may be
exchanged with any other suitable discovery provider (e.g., for non-IP compatible
media, like ZigBee). Upon reception of a broadcast message, a node will send a
unicast answer to the broadcasting node with its own connection information. Thus,
each node keeps a local directory of known remote hosts. This directory is used
when searching for matching publishers on other nodes.

Whenever a subscriber requests a new subscription, all remote hosts will be
queried about matching publishers. If any matches are found, proxy objects at the
remote node and stubs at the subscriber node will be created which act as trans-
parent transport points for published event data. A proxy acts as subscriber at the
remote node, serialises the event data and sends it to the stub. The stub deserialises
it and publishes it as a local publisher for the original subscriber to receive.

The requested subscription types by each subscriber module are cached by the
local Ella instance. Whenever a new node is discovered in the network which runs
suitable publishers, they will start to deliver their events to the local node. In addi-
tion, if a publisher has delayed its start, the node sends out a notification to other
nodes that a potential publisher has become available for their subscribers. These
two functionalities enable soft time decoupling and do not require publishers and
subscribers to start at the same time.

11.5.1.5 Communication

Ella instances on remote nodes use an efficient message structure to exchange data.
A binary protocol is used to encode message types and to transport any necessary
data. For any given message payload, only nine bytes of overhead are added, one
byte for the message type, and four bytes each for the sender node ID and the mes-
sage ID. For small networks this can be reduced by only using single bytes for the
sender node ID.

Besides data communication, Ella provides also a unicast control channel be-
tween publishers and subscribers. This can be used to exchange application-specific
messages as in RPC systems. Instead of transporting data, control commands can
be sent between publishers and subscribers. As an example, an image processing
module could instruct the image capturing module to adapt its frame rate. This uni-
cast channel was introduced to enable support of interaction–awareness (see Sec-
tion 11.2), for which nodes have to know each other in order to enable participation
in interactions with specific neighbours.



11 Middleware Support for Self-aware Computing Systems 235

11.5.1.6 Implementation Details

Ella has been developed in C#.Net. It is capable of running in the open source Mono2

runtime and can thus be deployed on all major operating systems and many other
platforms. Since it is only performing high-level tasks like I/O and management
of subscriptions, its overhead compared to a native implementation is very low. In
addition, it is easily possible to integrate native code components into any .Net ap-
plication. Thus, performance-critical applications parts can be written in C++ and
be integrated into Ella with low effort. Of course, pre-existing native code can be
integrated as well.

Subscription Handling:
On each node, Ella keeps a list of all subscriptions relevant to this node, i.e., all
subscriptions where modules of this node are publishers and/or subscribers (this is
also true for subscriptions only on the local nodes). Whenever a publisher publishes
a new event, all subscribers are found in this list. In the simplest case, this data is
delivered to a local subscriber (which is on the same node). For remote subscribers,
this list contains the proxy at the publisher node. A proxy serialises the event data
and sends it to the receiver node. There, a stub reconstructs the data and publishes it
locally for the intended subscriber to receive it. In cases where unreliable transport
can be used to deliver data (i.e., where loss of data can be tolerated), a UDP multi-
cast mechanism can be used in order to save communication costs.

Event Correlation:
In some cases, a user might want to indicate that two events are somehow correlated.
For example, the image of a camera and the result of a tracking algorithm might
correspond to each other. For this case, Ella provides a simple mechanism where a
publisher can indicate such a correspondence. This is then delivered to all modules
which subscribed to both events. This is also part of Ella’s interaction-awareness
support capabilities because it enables nodes to handle correlations of the stimuli
they are emitting.

11.5.2 SACS-Specific Features in Ella

Ella provides several useful services to an application. It handles discovery and com-
munication, provides a control channel and helps in modularising an application. It
enables flexible reconfiguration of an application with its module-based architec-
ture. The use of code annotations to declare Ella-specific code regions makes it
very easy for developers to port their existing code. The transparent subscription
mechanism of publish/subscribe enables decoupling in space and time and the syn-
chronisation of modules.

2 http://www.go-mono.org



236 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

Ella provides specific features for self-awareness and self-expression in various
aspects described in Table 11.1. In an application which uses Ella, the nodes can
communicate without any concerns on the communication channel. The middleware
system cares about message and data delivery and additionally enables application-
specific 1:1 messages.

Further, Ella enables context-awareness, reacting properly when the network is
congested. It informs the appropriate publisher that it is congesting the network. The
application developer can than decide what to do with this information. In the case
of a VSN application, the cameras may reduce the resolution or the frame rate to
achieve a continuous and reliable image stream without congesting the network.

Ella inherently deals with modularised applications since it connects individual
modules by address-free communication mechanisms. Hence, a module does not
need to have any reference to another module in order to exchange data. In addition,
modules can start and terminate arbitrarily during application runtime. This not only
increases robustness to module failures, it also enables the exchange of specific
modules at runtime.

11.5.3 Ella in Practice

Fig. 11.4 The networked application consisting of PIR sensors, cameras, an authentication/autho-
risation module, door locks and ambient intelligence devices. Solid lines indicate published data,
dotted lines indicate one-to-one messages.

Using the example introduced in Section 11.1.2 we now show how a self-aware
application can be realised using Ella. We assume all components of the system to
be on individual nodes. Figure 11.4 shows the architecture of the application.

PIR sensors act as pure publishers. Whenever a PIR sensor detects motion it will
publish a new event of type Movement.



11 Middleware Support for Self-aware Computing Systems 237

Cameras subscribe to this type of data. As soon as a camera receives this signal,
it will start to record and publish the data type Image.

The authentication/authorisation module is subscribed to Image and performs
face recognition. When it has received enough images from a camera, it sends a
unicast message back to the corresponding camera telling it to go back into sleep
mode and wait for the next Movement.

The lock in the door continuously publishes LockState information indicating if
it is closed or open. The authentication module sends a control message to the lock
to open it for an authorised user. Further, it publishes UserInformation to all devices
which are concerned with adapting to specific user needs. Ambient intelligence de-
vices like lighting controls, tablets, displays and others are subscribed to this data
type and use the received events to change their state or display specific information.

Using Ella in this application brings various advantages. First, the application is
very flexible in terms of data sources for stimuli input. As an example, also other
sensor types may publish Movement events which activate cameras. This may be
pressure mats on the floor or acoustic sensors. They can be integrated into the system
without changing the application. The same holds true for bringing new subscribers
into the system, a dedicated application part which consumes published data for
archiving purposes.

Second, the possibility to use control messages in addition to publishing data
enables feedback channels to publishers and interaction-aware behaviour of the ap-
plication. The authentication/authorisation module can use this feature to disable a
specific subset of cameras after an authentication fails and thus may record addi-
tional images of unauthorised persons.

Third, the subscription callback mechanism can be used by modules to dynam-
ically adapt their behaviour. As an example, the authentication module may also
subscribe to Fingerprint data. If it receives a subscription callback it knows that
there is a fingerprint reader in the system. Upon identifying a person it can then wait
for fingerprint information before authorising him.

11.6 Conclusion

This chapter provided an overview of distributed self-aware computing systems and
and how middleware systems can support their development. Distributed SACS have
additional requirements concerning communication, robustness and scalability as
well as architectural primitives of self-aware applications.

A categorisation of middleware systems into host-centric and content-centric sys-
tems and their abilities to support SACS were presented. The publish/subscribe
paradigm was discussed as a solid basis for a self-aware application since it en-
ables decoupling of components along with scalability and robustness. However, it
does not support all self-awareness aspects that can be emphasised by a middleware
system.



238 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

We introduced Ella, a hybrid middleware system based on a distributed publish/-
subscribe implementation and enhanced with additional concepts. Ella combines the
best of different middleware paradigms in terms of self-awareness support. For our
discussion, we used an example application to describe a possible implementation
of a distributed SACS.



11 Middleware Support for Self-aware Computing Systems 301

Acknowledgements

The research leading to these results was conducted in the EPiCS project (Engineer-
ing Proprioception in Computing Systems) and received funding from the European
Union Seventh Framework Programme under grant agreement no. 257906.

The contributors would like to acknowledge additional financial support for re-
search performed in individual chapters of this book.

• Chapters 6 and 7 were also supported by EPSRC Grants (Nos. EP/I010297/1,
EP/K001523/1 and EP/J017515/1).

• Chapter 8 was also supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901)
and the International Graduate School on Dynamic Intelligent Systems of
Paderborn University.

• Chapter 9 was also supported in part by HiPEAC NoE, by the European Union
Seventh Framework Programme under grant agreement numbers 287804 and
318521, by the UK EPSRC, by the Maxeler University Programme, and by
Xilinx.

• Chapter 12 was also supported in part by the China Scholarship Council, by
the European Union Seventh Framework Programme under grant agreement
numbers 287804 and 318521, by the UK EPSRC, by the Maxeler University
Programme, and by Xilinx.

• Chapter 13 was also supported by the research initiative Mobile Vision with
funding from the Austrian Institute of Technology and the Austrian Federal
Ministry of Science, Research and Economy HRSMV programme BGBl. II
no. 292/2012.

• Chapter 14 was also supported by the Research Council of Norway under grant
agreement number 240862/F20.

• Peter Lewis would like to thank the participants of the Dagstuhl Seminar
“Model-Driven Algorithms and Architectures for Self-aware Computing Sys-
tems”, Seminar Number 15041, for many insightful discussions on notions of
self-aware computing.

References

1. Aberdeen, D., Baxter, J.: Emmerald: a fast matrix-matrix multiply using Intel’s SSE instruc-
tions. Concurrency and Computation: Practice and Experience 13(2), 103–119 (2001)

2. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover Publications
(1965)

3. Agarwal, A., Harrod, B.: Organic computing. Tech. Rep. White paper, MIT and DARPA
(2006)

4. Agarwal, A., Miller, J., Eastep, J., Wentziaff, D., Kasture, H.: Self-aware computing. Tech.
Rep. AFRL-RI-RS-TR-2009-161, MIT (2009)



302 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

5. Agne, A., Hangmann, H., Happe, M., Platzner, M., Plessl, C.: Seven recipes for setting your
FPGA on fire – a cookbook on heat generators. Microprocessors and Microsystems 38(8),
911–919 (2014). DOI 10.1016/j.micpro.2013.12.001

6. Agne, A., Happe, M., Keller, A., Lübbers, E., Plattner, B., Platzner, M., Plessl, C.: ReconOS:
An Operating System Approach for Reconfigurable Computing. IEEE Micro 34(1), 60–71
(2014). DOI 10.1109/MM.2013.110

7. Agne, A., Platzner, M., Lübbers, E.: Memory virtualization for multithreaded reconfig-
urable hardware. In: Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL), pp. 185–188. IEEE Computer Society (2011). DOI
10.1109/FPL.2011.42

8. Ahuja, S., Carriero, N., Gelernter, D.: Linda and friends. IEEE Computer 19(8), 26–34
(1986). DOI 10.1109/MC.1986.1663305

9. Al-Naeem, T., Gorton, I., Babar, M.A., Rabhi, F., Benatallah, B.: A quality-driven sys-
tematic approach for architecting distributed software applications. In: Proceedings of the
27th International Conference on Software Engineering, pp. 244–253. ACM (2005). DOI
10.1145/1062455.1062508. URL http://doi.acm.org/10.1145/1062455.1062508

10. Ali, H.A., Desouky, A.I.E., Saleh, A.I.: Studying and Analysis of a Vertical Web Page Clas-
sifier Based on Continuous Learning Naive Bayes (CLNB) Algorithm, pp. 210–254. Infor-
mation Science (2009)

11. Alippi, C., Boracchi, G., Roveri, M.: Just-in-time classifiers for recurrent concepts. IEEE
Transactions on Neural Networks and Learning Systems 24(4), 620–634 (2013)

12. Amir, E., Anderson, M.L., Chaudhri, V.K.: Report on DARPA workshop on self-aware com-
puter systems. Tech. Rep. UIUCDCS-R-2007-2810, UIUC Comp. Sci. (2007)

13. ANA: Autonomic Network Architecture. URL www.ana-project.org. (accessed March 8,
2016)

14. Angelov, P.: Nature-inspired methods for knowledge genera-
tion from data in real-time (2006). URL http://www.nisis.risk-
technologies.com/popup/Mallorca2006 Papers/A333 13774 Nature-
inspiredmethodsforKnowledgeGeneration Angelov.pdf

15. Apache: Hadoop. http://hadoop.apache.org/docs/r1.2.1/mapred tutorial.html. (Accessed
March 8, 2016)

16. Araya-Polo, M., Cabezas, J., Hanzich, M., Pericàs, M., Rubio, F., Gelado, I., Shafiq, M.,
Morancho, E., Navarro, N., Ayguadé, E., Cela, J.M., Valero, M.: Assessing accelerator-based
HPC reverse time migration. IEEE Transactions on Parallel and Distributed Systems 22(1),
147–162 (2011)

17. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson,
D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The landscape of parallel com-
puting research: A view from Berkeley. Tech. Rep. UCB/EECS-2006-183, EECS Depart-
ment, University of California, Berkeley (2006)

18. Asendorpf, J.B., Warkentin, V., Baudonnière, P.M.: Self-awareness and other-awareness. II:
Mirror self-recognition, social contingency awareness, and synchronic imitation. Develop-
mental Psychology 32(2), 313 (1996)

19. Athan, T.W., Papalambros, P.Y.: A note on weighted criteria methods for compromise solu-
tions in multi-objective optimization. Engineering Optimization 27(2), 155–176 (1996)

20. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit prob-
lem. Machine Learning 47(2–3), 235–256 (2002)

21. Babaoglu, O., Binci, T., Jelasity, M., Montresor, A.: Firefly-inspired heartbeat synchroniza-
tion in overlay networks. In: First International Conference on Self-Adaptive and Self-
Organizing Systems (SASO), pp. 77–86 (2007)

22. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8), 1619–1632
(2011)

23. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective op-
timization. Tech. Rep. TIK 286, Computer Engineering and Networks Laboratory, ETH
Zurich, Zurich (2008)



11 Middleware Support for Self-aware Computing Systems 303

24. Baena-Garcı́a, M., Campo-Ávila, J.D., Fidalgo, R., Bifet, A.: Early drift detection method.
In: Procedings of the 4th ECML PKDD International Workshop on Knowledge Discovery
From Data Streams (IWKDDS), pp. 77–86. Berlin, Germany (2006)

25. Baker, S.: The identification of the self. Psyc. Rev. 4(3), 272–284 (1897)
26. Banks, A., Gupta, R.: MQTT Version 3.1.1. http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html (2014)
27. Bartolini, D.B., Sironi, F., Maggio, M., Cattaneo, R., Sciuto, D., Santambrogio, M.D.: A

Framework for Thermal and Performance Management. In: Proceedings of the Workshop on
Managing Systems Automatically and Dynamically (MAD) (2012)

28. Basheer, I.A., Hajmeer, M.: Artificial neural networks: fundamentals, computing, design, and
application. Journal of Microbiological Methods 43(1), 3–31 (2000)

29. Basseur, M., Zitzler, E.: Handling uncertainty in indicator-based multiobjective optimization.
International Journal of Computational Intelligence Research 2(3), 255–272 (2006)

30. Basudhar, A., Dribusch, C., Lacaze, S., Missoum, S.: Constrained efficient global optimiza-
tion with support vector machines. Structural and Multidisciplinary Optimization 46(2),
201–221 (2012)

31. Baumann, A., Boltz, M., Ebling, J., Koenig, M., Loos, H.S., Merkel, M., Niem, W., Warzel-
han, J.K., Yu, J.: A review and comparison of measures for automatic video surveillance
systems. EURASIP Journal on Image and Video Processing 2008(4) (2008). DOI
10.1155/2008/824726

32. Becker, T., Agne, A., Lewis, P.R., Bahsoon, R., Faniyi, F., Esterle, L., Keller, A., Chandra, A.,
Jensenius, A.R., Stilkerich, S.C.: EPiCS: Engineering proprioception in computing systems.
In: Proceedings of the International Conference on Computational Science and Engineering
(CSE), pp. 353–360. IEEE Computer Society (2012)

33. Ben-Hur, A., Weston, J.: A user’s guide to support vector machines. Data Mining Techniques
for the Life Sciences 609, 223–239 (2010)

34. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thompson, P.: GPUVerify: a verifier for
GPU kernels. In: Proceedings of the ACM International Conference on object-oriented Pro-
gramming Systems Languages and Applications (OOPSLA) (2012)

35. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on
dominated hypervolume. European Journal on Operational Research 181(3), 1653–1669
(2007)

36. Bevilacqua, F., Zamborlin, B., Sypniewski, A., Schnell, N., Guédy, F., Rasamimanana, N.:
Continuous realtime gesture following and recognition. In: Gesture in embodied communi-
cation and human-computer interaction, pp. 73–84. Springer (2010)

37. Biehl, J.T., Adamczyk, P.D., Bailey, B.P.: Djogger: A mobile dynamic music device. In:
Proceedings of CHI ’06 Extended Abstracts on Human Factors in Computing Systems, pp.
556–561. ACM (2006)

38. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, United
Kingdom (2005)

39. Bojic, I., Lipic, T., Podobnik, V.: Bio-inspired clustering and data diffusion in machine social
networks. In: Computational Social Networks, pp. 51–79. Springer (2012)

40. Bongard, J., Lipson, H.: Evolved machines shed light on robustness and resilience. Proceed-
ings of the IEEE 102(5), 899–914 (2014)

41. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling.
Science 314(5802), 1118–1121 (2006)

42. Borkar, S.: Designing Reliable Systems from Unreliable Components: The Challenges of
Transistor Variability and Degradation. IEEE Micro pp. 10–16 (2005)

43. Bouabene, G., Jelger, C., Tschudin, C., Schmid, S., Keller, A., May, M.: The Autonomic
Network Architecture (ANA). IEEE Journal on Selected Areas in Communications 28(1),
4–14 (2010). DOI 10.1109/JSAC.2010.100102

44. Boyd, J.: The Essence of Winning and Losing. http://dnipogo.org/john-r-boyd/ (1996). (Ac-
cessed March 8, 2016)

45. Bramberger, M., Doblander, A., Maier, A., Rinner, B., Schwabach, H.: Distributed Embedded
Smart Cameras for Surveillance Applications. IEEE Computer 39(2), 68–75 (2006)



304 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

46. Brdiczka, O., Crowley, J.L., Reignier, P.: Learning situation models in a smart home. IEEE
Transactions on Systems, Man, and Cybernetics, Part B 39, 56–63 (2009)

47. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
48. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
49. Brockhoff, D., Zitzler, E.: Improving hypervolume-based multiobjective evolutionary algo-

rithms by using objective reduction methods. In: Proceedings of the 2007 IEEE Congress on
Evolutionary Computation, pp. 2086–2093 (2007)

50. Buchanan, J.T.: A naive approach for solving MCDM problems: The GUESS method. Jour-
nal of the Operational Research Society 48(2), 202–206 (1997)

51. Buck, J.: Synchronous rhythmic flashing of fireflies. The Quarterly Review of Biology 13(3),
301–314 (1938)

52. Buck, J.: Synchronous rhythmic flashing of fireflies II. The Quarterly Review of Biology
63(3), 265–289 (1988)

53. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: Hyper-
heuristics: A survey of the state of the art. Journal of the Operational Research Society
206(1), 241–264 (2013)

54. Buschmann, F., Henney, K., Douglas, S.C.: Pattern-oriented software architecture: On pat-
terns and pattern languages. John Wiley and Sons (2007)

55. Buss, A.H.: Self-consciousness and social anxiety. W. H. Freeman, San Fransisco, CA, USA
(1980)

56. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software needs
quantitative verication at runtime. Communications of the ACM 55(9), 69–77 (2012)

57. Caramiaux, B., Wanderley, M.M., Bevilacqua, F.: Segmenting and parsing instrumentalists’
gestures. Journal of New Music Research 41(1), 13–29 (2012)

58. Carver, C.S., Scheier, M.: Attention and Self-Regulation: A Control-Theory Approach to
Human Behavior. Springer (1981)

59. de Castro, L.N.: Fundamentals of natural computing: basic concepts, algorithms, and appli-
cations. Chapman & Hall/CRC Computer and Information Sciences (2006)

60. Chandra, A.: A methodical framework for engineering co-evolution for simulating socio-
economic game playing agents. Ph.D. thesis, The University of Birmingham (2011)

61. Chandra, A., Nymoen, K., Volsund, A., Jensenius, A.R., Glette, K., Torresen, J.: Enabling
participants to play rhythmic solos within a group via auctions. In: Proceedings of the In-
ternational Symposium on Computer Music Modeling and Retrieval (CMMR), pp. 674–689
(2012)

62. Chandra, A., Yao, X.: Ensemble learning using multi-objective evolutionary algorithms.
Journal of Mathematical Modelling and Algorithms 5(4), 417–445 (2006)

63. Chang, C., Wawrzynek, J., Brodersen, R.W.: BEE2: a high-end reconfigurable computing
system. IEEE Transactions on Design & Test of Computer 22(2), 114–125 (2005)

64. Chen, J., John, L.K.: Efficient program scheduling for heterogeneous multi-core processors.
In: Proceedings of the Design Automation Conference (DAC). ACM (2009)

65. Chen, R., Lewis, P.R., Yao, X.: Temperature management for heterogeneous multi-core FP-
GAs using adaptive evolutionary multi-objective approaches. In: Proceedings of the Interna-
tional Conference on Evolvable Systems (ICES), pp. 101–108. IEEE (2014)

66. Chen, S., Langner, C.A., Mendoza-Denton, R.: When dispositional and role power fit: im-
plications for self-expression and self-other congruence. Journal of Personality and Social
Psychology 96(3), 710–27 (2009)

67. Chen, T., Bahsoon, R.: Self-adaptive and Sensitivity-aware QoS Modeling for the
Cloud. In: Proceedings of the 8th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), pp. 43–52. IEEE (2013). URL
http://dl.acm.org/citation.cfm?id=2487336.2487346

68. Chen, T., Bahsoon, R.: Symbiotic and Sensitivity-aware Architecture for Globally-optimal
Benefit in Self-adaptive Cloud. In: Proceedings of the 9th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 85–94. ACM
(2014). DOI 10.1145/2593929.2593931. URL http://doi.acm.org/10.1145/2593929.2593931



11 Middleware Support for Self-aware Computing Systems 305

69. Chen, T., Bahsoon, R., Yao, X.: Online QoS Modeling in the Cloud: A Hybrid and Adaptive
Multi-learners Approach. In: 2014 IEEE/ACM 7th International Conference on Utility and
Cloud Computing (UCC), pp. 327–336 (2014)

70. Chen, T., Faniyi, F., Bahsoon, R., Lewis, P.R., Yao, X., Minku, L.L., Esterle, L.: The hand-
book of engineering self-aware and self-expressive systems. Tech. rep., EPiCS EU FP7
project consortium (2014). URL http://arxiv.org/abs/1409.1793. Available via EPiCS web-
site and arXiv

71. Chen, X., Li, X., Wu, H., Qiu, T.: Real-time Object Tracking via CamShift-based Robust
Framework. In: Proceedings of the International Conference on Information Science and
Technology (ICIST). IEEE (2012)

72. Chow, G.C.T., Grigoras, P., Burovskiy, P., Luk, W.: An efficient sparse conjugate gradient
solver using a Beneš permutation network. In: Proceedings of the 24th International Confer-
ence on Field Programmable Logic and Applications, pp. 1–7 (2014)

73. Chow, G.C.T., Tse, A.H.T., Jin, Q., Luk, W., Leong, P.H.W., Thomas, D.B.: A mixed preci-
sion Monte Carlo methodology for reconfigurable accelerator systems. In: Proceedings of
the ACM/SIGDA 20th International Symposium on Field Programmable Gate Arrays, FPGA
2012, Monterey, California, USA, February 22-24, 2012, pp. 57–66 (2012)

74. Christensen, A.L., O’Grady, R., Dorigo, M.: From fireflies to fault-tolerant swarms of robots.
IEEE Transactions on Evolutionary Computation 13(4), 754–766 (2009)

75. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description Lan-
guage (WSDL) 1.1. World Wide Web Consortium (2001)

76. Chu, F., Zaniolo, C.: Fast and light boosting for adaptive mining of data streams. In: Pro-
ceedings of the Eighth Pacific-Asia Knowledge Discovery and Data Mining Conference
(PAKDD), pp. 282–292. Sydney (2004)

77. Cichowski, A., Madden, C., Detmold, H., Dick, A., Van den Hengel, A., Hill, R.: Tracking
Hand-off in Large Surveillance Networks. In: Proceedings of the International Conference
Image and Vision Computing, pp. 276–281. IEEE Computer Society Press (2009). DOI
10.1109/IVCNZ.2009.5378396

78. Claus, C., Boutilier, C.: The Dynamics of Reinforcement Learning in Cooperative Multiagent
Systems. In: Proceedings of the Conference on Artificial Intelligence/Innovative Applica-
tions of Artificial Intelligence, pp. 746–752. American Association for Artificial Intelligence
(1998)

79. Collins, N.: The analysis of generative music programs. Organised Sound 13, 237–248
(2008)

80. Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features.
IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1631–1643 (2005).
DOI 10.1109/tpami.2005.205

81. Colorni, A., Dorigo, M., Maniezzo, V., et al.: Distributed optimization by ant colonies. In:
Proceedings of the first European conference on artificial life, vol. 142, pp. 134–142. Elsevier
(1991)

82. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Transactions on
Pattern Analysis and Machine Intelligence 25(5) (2003). DOI 10.1109/tpami.2003.1195991

83. Connors, K.: Chemical kinetics: the study of reaction rates in solution. VCH Publishers
(1990)

84. Cox, M.: Metacognition in computation: A selected research review. Artificial Intelligence
169(2), 104–141 (2005)

85. Cramer, T., Schmidl, D., Klemm, M., an Mey, D.: OpenMP Programming on Intel Xeon Phi
Coprocessors: An Early Performance Comparison. In: Proceedings of the Many-core Appli-
cations Research Community (MARC) Symposium, pp. 38–44. Aachen, Germany (2012)

86. Crockford, D.: The application/json Media Type for JavaScript Object Notation (JSON).
RFC 7159, RFC Editor (2014). URL http://tools.ietf.org/pdf/rfc7159.pdf

87. Curreri, J., Stitt, G., George, A.D.: High-level synthesis of in-circuit assertions for verifica-
tion, debugging, and timing analysis. International Journal of Reconfigurable Computing
2011, 1–17 (2011). DOI http://dx.doi.org/10.1155/2011/406857



306 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

88. Czajkowski, T.S., Aydonat, U., Denisenko, D., Freeman, J., Kinsner, M., Neto, D., Wong,
J., Yiannacouras, P., Singh, D.P.: From OpenCL to high-performance hardware on FPGAs.
In: Proceedings of the 22nd International Conference on Field Programmable Logic and
Applications (FPL), pp. 531–534. Oslo, Norway (2012)

89. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D., Shalf,
J., Yelick, K.: Stencil computation optimization and auto-tuning on state-of-the-art multi-
core architectures. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 2008)., p. 4. IEEE (2008)

90. Davidson, A.A., Owens, J.D.: Toward techniques for auto-tuning GPU algorithms. In: Pro-
ceedings of the 10th International Conference on Applied Parallel and Scientific Computing
(PARA), Revised Selected Papers, Part II, pp. 110–119. Reykjavı́k (2010)

91. Day, J.: Patterns in Network Architecture: A Return to Fundamentals. Prentice Hall Interna-
tional (2008)

92. Day, J., Matta, I., Mattar, K.: Networking is IPC: A Guiding Principle to a Better Inter-
net. In: Proceedings of the 2008 ACM CoNEXT Conference, pp. 67:1–67:6 (2008). DOI
10.1145/1544012.1544079. URL http://doi.acm.org/10.1145/1544012.1544079

93. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: Pro-
ceedings of the 6th Symposium on Operating System Design and Implementation (OSDI),
pp. 137–150. San Francisco, California, USA (2004)

94. Deb, K.: Multi-objective optimization using evolutionary algorithms, vol. 16. John Wiley &
Sons, England (2001)

95. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

96. Denholm, S., Inoue, H., Takenaka, T., Luk, W.: Application-specific customisation of market
data feed arbitration. In: Proceedings of the International Conference on Field Programmable
Technology (ICFPT), pp. 322–325. IEEE (2013)

97. Denholm, S., Inouey, H., Takenakay, T., Becker, T., Luk, W.: Low latency FPGA accel-
eration of market data feed arbitration. In: Proceedings of the International Conference
on Application-Specific Systems, Architectures, and Processors (ASAP), pp. 36–40. IEEE
(2014). DOI 10.1109/ASAP.2014.6868628

98. Dennett, D.C.: Consciousness Explained. Penguin Science (1993)
99. Dennis, J.B., Misunas, D.: A preliminary architecture for a basic data flow processor. In:

Proceedings of the 2nd Annual Symposium on Computer Architecture, pp. 126–132 (1974)
100. Dieber, B., Simonjan, J., Esterle, L., Rinner, B., Nebehay, G., Pflugfelder, R., Fernandez,

G.J.: Ella: Middleware for multi-camera surveillance in heterogeneous visual sensor net-
works. In: Proceedings of the International Conference on Distributed Smart Cameras
(ICDSC) (2013). DOI 10.1109/ICDSC.2013.6778223

101. Dietterich, T.G.: Ensemble methods in machine learning. In: Proceedings of the First Inter-
national Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science, pp.
1–15. Springer-Verlag (2000)

102. Diguet, J.P., Eustache, Y., Gogniat, G.: Closed-loop–based Self-adaptive
Hardware/Software-Embedded Systems: Design Methodology and Smart Cam Case
Study. ACM Transactions on Embedded Computing Systems 10(3), 1–28 (2011)

103. Dinh, M.N., Abramson, D., J. Chao, D.K., Gontarek, A., Moench, B., DeRose, L.: Debugging
scientific applications with statistical assertions. Procedia Computer Science 9(0), 1940–
–1949 (2012)

104. Dobson, S., Denazis, S., Fernández, A., Gaı̈ti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre,
F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications. ACM Transactions
on Autonomous and Adaptive Systems 1(2), 223–259 (2006)

105. Dobson, S., Sterritt, R., Nixon, P., Hinchey, M.: Fulfilling the vision of autonomic computing.
IEEE Computer 43(1), 35 –41 (2010)

106. Dobzhansky, T., Hecht, M., Steere, W.: On some fundamental concepts of evolutionary biol-
ogy. Evolutionary Biology 2, 1–34 (1968)

107. Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Mi-
lano (1992)



11 Middleware Support for Self-aware Computing Systems 307

108. Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical computer
science 344(2), 243–278 (2005)

109. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 26(1),
29–41 (1996)

110. Dutta, R., Rouskas, G., Baldine, I., Bragg, A., Stevenson, D.: The SILO Architecture for
Services Integration, controL, and Optimization for the Future Internet. In: Proceedings of
the IEEE International Conference on Communications (ICC), pp. 1899–1904 (2007). DOI
10.1109/ICC.2007.316

111. Duval, S., Wicklund, R.A.: A theory of objective self awareness. Academic Press (1972)
112. Ehrgott, M.: Other Methods for Pareto Optimality. In: Multicriteria Optimization, Lecture

Notes in Economics and Mathematical Systems, vol. 491, pp. 77–102. Springer (2000)
113. Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer (2003)
114. Eigenfeldt, A., Pasquier, P.: Considering vertical and horizontal context in corpus-based gen-

erative electronic dance music. In: Proceedings of the Fourth International Conference on
Computational Creativity, p. 72 (2013)

115. Eigenfeldt, A., Pasquier, P.: Evolving structures for electronic dance music. In: Proceedings
of the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp.
319–326. ACM (2013)

116. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: a framework for engineering self-tuning
self-adaptive software systems. In: Proceedings of the eighteenth ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pp. 7–16. ACM (2010). DOI
10.1145/1882291.1882296. URL http://doi.acm.org/10.1145/1882291.1882296

117. Elliott, G.T., Tomlinson, B.: PersonalSoundtrack: context-aware playlists that adapt to user
pace. In: Proceedings of CHI’06 Extended Abstracts on Human Factors in Computing Sys-
tems, pp. 736–741. ACM (2006)

118. Ellis, T., Makris, D., Black, J.: Learning a Multi-camera Topology. In: Proceedings of the
Joint International Workshop on Visual Surveillance and Performance Evaluation of Track-
ing and Surveillance, pp. 165–171. IEEE Computer Society Press (2003)

119. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments.
IEEE Transactions on Neural Networks 22, 1517–1531 (2011)

120. Endo, T., Matsuoka, S.: Massive supercomputing coping with heterogeneity of modern ac-
celerators. In: Proceedings of the 22nd IEEE International Symposium on Parallel and Dis-
tributed Processing (IPDPS), pp. 1–10 (2008)

121. Erdem, U.M., Sclaroff, S.: Look there! Predicting Where to Look for Motion in an Active
Camera Network. In: Proceedings of the IEEE Conference on Advanced Video and Signal-
based Surveillance, pp. 105–110. Como, Italy (2005)

122. Esterle, L., Lewis, P.R., Bogdanski, M., Rinner, B., Yao, X.: A socio-economic approach
to online vision graph generation and handover in distributed smart camera networks. In:
Proceedings of the International Conference on Distributed Smart Cameras (ICDSC), pp.
1–6. IEEE (2011). DOI 10.1109/ICDSC.2011.6042902

123. Esterle, L., Lewis, P.R., Caine, H., Yao, X., Rinner, B.: CamSim: A distributed smart camera
network simulator. In: Proceedings of the International Conference on Self-Adaptive and
Self-Organizing Systems Workshops, pp. 19–20. IEEE Computer Society Press (2013). DOI
10.1109/SASOW.2013.11

124. Esterle, L., Lewis, P.R., Rinner, B., Yao, X.: Improved adaptivity and robustness in decen-
tralised multi-camera networks. In: Proceedings of the International Conference on Dis-
tributed Smart Cameras, pp. 1–6. ACM (2012)

125. Esterle, L., Lewis, P.R., Yao, X., Rinner, B.: Socio-economic vision graph generation and
handover in distributed smart camera networks. ACM Transactions on Sensor Networks
10(2), 20:1–20:24 (2014). DOI 10.1145/2530001

126. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The Many Faces of Publish/Sub-
scribe. ACM Computing Surveys 35(2), 114–131 (2003)



308 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

127. Faniyi, F., Lewis, P.R., Bahsoon, R., Xao, X.: Architecting self-aware software systems. In:
Proceedings of the IEEE/IFIP Conference on Software Architecture (WICSA), pp. 91–94.
IEEE (2014)

128. Farrell, R., Davis, L.S.: Decentralized discovery of camera network topology. In: Proceed-
ings of the International Conference on Distributed Smart Cameras, pp. 1–10. IEEE Com-
puter Society Press (2008). DOI 10.1109/ICDSC.2008.4635696

129. Fels, S., Hinton, G.: Glove-talk: A neural network interface between a data-glove and a
speech synthesizer. IEEE Transactiona on Neural Networks 4(1), 2–8 (1993)

130. Feng, W.: Making a case for efficient supercomputing. ACM Queue 1(7), 54–64 (2003)
131. Fenigstein, A., Scheier, M.F., Buss, A.H.: Public and private self-consciousness: Assessment

and theory. Journal of Consulting and Clinical Psychology 43(4), 522–527 (1975)
132. Fern, A., Givan, R.: Online ensemble learning: An empirical study. Machine Learning 53(1–

2), 71–109 (2003)
133. Fette, B.: Cognitive radio technology. Academic Press (2009)
134. Fiebrink, R., Trueman, D., Cook, P.R.: A meta-instrument for interactive, on-the-fly machine

learning. In: Proceedings of the International Conference on New Interfaces for Musical
Expression. Pittsburgh (2009)

135. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans-
actions on Internet Technology 2(2), 115–150 (2002). DOI 10.1145/514183.514185. URL
http://doi.acm.org/10.1145/514183.514185

136. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of
the 13th International Conference on Machine Learning, pp. 148–156 (1996)

137. Froming, W.J., Walker, G.R., Lopyan, K.J.: Public and private self-awareness: When personal
attitudes conflict with societal expectations. Journal of Experimental Social Psychology
18(5), 476 – 487 (1982). DOI 10.1016/0022-1031(82)90067-1

138. Fu, H., Sendhoff, B., Tang, K., Yao, X.: Finding robust solutions to dynamic optimization
problems. In: Proceedings of the 16th European conference on Applications of Evolutionary
Computation (EvoApplications), pp. 616–625 (2013)

139. Funie, A., Salmon, M., Luk, W.: A hybrid genetic-programming swarm-optimisation ap-
proach for examining the nature and stability of high frequency trading strategies. In:
Proceedings of the 13th International Conference on Machine Learning and Applica-
tions (ICMLA), pp. 29–34. Detroit, USA (2014). DOI 10.1109/ICMLA.2014.11. URL
http://dx.doi.org/10.1109/ICMLA.2014.11

140. Gallup, G.G.: Chimpanzees: self-recognition. Science (1970)
141. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Proceed-

ings of the 7th Brazilian Symposium on Artificial Intelligence (SBIA) - Lecture Notes in
Computer Science, vol. 3171, pp. 286–295. Springer, São Luiz do Maranhão, Brazil (2004)

142. Gao, J., Fan, W., Han, J.: On appropriate assumptions to mine data streams: Analysis and
practice. In: Proceedings of the Seventh IEEE International Conference on Data Mining
(ICDM), pp. 143–152 (2007)

143. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: architecture-
based self-adaptation with reusable infrastructure. IEEE Computer 37(10), 46–54 (2004)

144. Gelenbe, E., Loukas, G.: A self-aware approach to denial of service defence. Computer
Networks 51(5), 1299–1314 (2007)

145. Goto, M.: Active music listening interfaces based on signal processing. In: Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 4, pp.
1441–1444 (2007)

146. Gouin-Vallerand, C., Abdulrazak, B., Giroux, S., Mokhtari, M.: Toward autonomic pervasive
computing. In: Proceedings of the 10th International Conference on Information Integration
and Web-based Applications & Services, iiWAS ’08, pp. 673–676. ACM, New York, NY,
USA (2008)

147. Goukens, C., Dewitte, S., Warlop, L.: Me, myself, and my choices: The influence of pri-
vate self-awareness on preference-behavior consistency. Tech. rep., Katholieke Universiteit
Leuven (2007)



11 Middleware Support for Self-aware Computing Systems 309

148. Grabner, H., Bischof, H.: On-line Boosting and Vision. In: Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, pp. 260–267 (2006)

149. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line Boosting for Robust Track-
ing. In: Proceedings of the European Conference on Computer Vision, Lecture Notes in
Computer Science, vol. 5302, pp. 234–247 (2008)

150. Group, K.: The OpenCL specification, version: 1.1. http://
www.khronos.org/registry/cl/specs/opencl-1.1.pdf. (Accessed March 8, 2016)

151. Gudger, E.W.: A historical note on the synchronous flashing of fireflies. Science 50(1286),
188–190 (1919)

152. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F., Karmarkar, A., Lafon,
Y.: SOAP Version 1.2. World Wide Web Consortium (2007)

153. Guo, C., Luk, W.: Accelerating Maximum Likelihood Estimation for Hawkes Point Pro-
cesses. In: Proceedings of the International Conference on Field Programmable Logic and
Applications (FPL), pp. 1–6. IEEE (2013)

154. Guo, C., Luk, W.: Accelerating parameter estimation for multivariate self-exciting point pro-
cesses. In: Proceedings of the International Symposium on Field-Programmable Gate Arrays
(FPGA), pp. 181–184. ACM (2014). DOI 10.1145/2554688.2554765

155. Haikonen, P.O.: Reflections of consciousness: The mirror test. In: Proceedings of the AAAI
Fall Symposium on Consciousness and Artificial Intelligence, pp. 67–71 (2007)

156. Hamid, R., Maddi, S., Johnson, A., Bobick, A., Essa, I., Isbell, C.: A novel sequence rep-
resentation for unsupervised analysis of human activities. Artificial Intelligence 173(14),
1221–1244 (2009). DOI DOI: 10.1016/j.artint.2009.05.002

157. Hansen, N.: The CMA evolution strategy: A comparing review. In: J. Lozano, P. Larrañaga,
I. Inza, E. Bengoetxea (eds.) Towards a New Evolutionary Computation, Studies in Fuzziness
and Soft Computing, vol. 192, pp. 75–102. Springer Berlin Heidelberg (2006)

158. Happe, M., Agne, A., Plessl, C.: Measuring and Predicting Temperature Distributions on
FPGAs at Run-Time. In: Proceedings of the International Conference on Reconfigurable
Computing and FPGAs (ReConFig), pp. 55–60. IEEE Computer Society (2011). DOI
10.1109/ReConFig.2011.59

159. Happe, M., Huang, Y., Keller, A.: Dynamic Protocol Stacks in Smart Camera Networks.
In: Proceedings of the International Conference on Reconfigurable Computing and FPGAs
(ReConFig), pp. 1–6. IEEE (2014)

160. Happe, M., Traber, A., Keller, A.: Preemptive Hardware Multitasking in ReconOS. In: Pro-
ceedings of the International Symposium on Applied Reconfigurable Computing (ARC),
Springer (2015)

161. Hart, J.W., Scassellati, B.: Robotic self-modeling. In: J. Pitt (ed.) The Computer After Me,
pp. 207–218. Imperial College Press / World Scientific Book (2014)

162. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: A
new methodology for contingent claims valuation. Econometrica 60(1), 77–105 (1992)

163. Hernandez, H., Blum, C.: Distributed graph coloring in wireless ad hoc networks: A light-
weight algorithm based on Japanese tree frogs’ calling behaviour. In: Proceedings of the 4th
Joint IFIP Wireless and Mobile Networking Conference (WMNC), pp. 1–7 (2011)

164. Herzen, B.V.: Signal Processing at 250 MHz Using High-Performance FPGAs. In: Proceed-
ings of the ACM Fifth International Symposium on Field-programmable Gate Arrays, pp.
62–68 (1997)

165. Ho, T.K.: The Random Subspace Method for Constructing Decision Forests. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

166. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision Combination in Multiple Classifier Systems.
IEEE Transactions on Pattern Analysis and Machine Intelligence 16(1), 66–75 (1994)

167. Ho, T.S.Y., Lee, S.B.: Term Structure Movements and Pricing Interest Rate Contingent
Claims. Journal of Finance 41(5), 1011–1029 (1986)

168. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the
ACM 12(10), 576–580 (1969)



310 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

169. Hockman, J.A., Wanderley, M.M., Fujinaga, I.: Real-time phase vocoder manipulation by
runner’s pace. In: Proceedings of the International Conference on New Interfaces for Musical
Expression (2009)

170. Hoffmann, H., Eastep, J., Santambrogio, M., Miller, J., Agarwal, A.: Application heartbeats
for software performance and health. In: ACM SIGPLAN Notices, vol. 45, pp. 347–348.
ACM (2010)

171. Hoffmann, H., Eastep, J., Santambrogio, M.D., Miller, J.E., Agarwal, A.: Application Heart-
beats: A Generic Interface for Specifying Program Performance and Goals in Autonomous
Computing Environments. In: Proceedings of the International Conference on Autonomic
Computing (ICAC) (2010)

172. Hoffmann, H., Holt, J., Kurian, G., Lau, E., Maggio, M., Miller, J.E., Neuman, S.M.,
Sinangil, M., Sinangil, Y., Agarwal, A., Chandrakasan, A.P., Devadas, S.: Self-aware com-
puting in the Angstrom processor. In: Proceedings of the 49th Annual Design Automation
Conference, DAC ’12, pp. 259–264. ACM, New York, NY, USA (2012)

173. Hoffmann, H., Maggio, M., Santambrogio, M.D., Leva, A., Agarwal, A.: SEEC: A general
and extensible framework for self-aware computing. Tech. Rep. MIT-CSAIL-TR-2011-046,
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy (2011)

174. Holland, B., George, A.D., Lam, H., Smith, M.C.: An analytical model for multilevel perfor-
mance prediction of Multi-FPGA systems. ACM Transactions on Reconfigurable Technol-
ogy and Systems 4(3), 27–28 (2011)

175. Holland, O., Goodman, R.B.: Robots with internal models: A route to machine conscious-
ness? Journal of Consciousness Studies 10(4), 77–109 (2003)

176. Holopainen, R.: Self-organised sound with autonomous instruments: Aesthetics and experi-
ments. Ph.D. thesis, University of Oslo (2012)

177. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Formal Modeling: Ac-
tors, Open Systems, Biological Systems, pp. 241–261. Springer (2011)

178. Hölzl, M., Wirsing, M.: Issues in engineering self-aware and self-expressive ensembles. In:
J. Pitt (ed.) The Computer After Me, pp. 37–54. Imperial College Press/World Scientific
Book (2014)

179. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective
optimization. In: Proceedings of the 1st IEEE Conference on Evolutionary Computation,
IEEE World Congress on Computational Intelligence, pp. 82–87 (1994)

180. Horn, P.: Autonomic computing: IBM’s perspective on the state of information technology.
Armonk, NY, USA. International Business Machines Corporation. (2001)

181. Hosseini, M.J., Ahmadi, Z., Beigy, H.: Using a classifier pool in accuracy based tracking of
recurring concepts in data stream classification. Evolving Systems 4(1), 43–60 (2013)

182. Hsu, C.H., Feng, W.C.: Reducing overheating-induced failures via performance-aware CPU
power management. In: Proceedings of the 6th International Conference on Linux Clusters:
The HPC Revolution (2005)

183. Hu, F., Evans, J.J.: Power and environment aware control of Beowulf clusters. Cluster Com-
puting 12, 299–308 (2009)

184. Hu, W., Tan, T., Wang, L., Maybank, S.: A Survey on Visual Surveillance of Object Motion
and Behaviors. IEEE Transactions on Systems, Man and Cybernetics, Part C 34(3), 334–352
(2004)

185. Huang, T., Russell, S.: Object Identification in a Bayesian Context. In: Proceedings of the
International Joint Conference on Artificial Intelligence, pp. 1276–1283 (1997)

186. Huebscher, M., McCann, J.: Simulation Model for Self-Adaptive Applications in Pervasive
Computing. In: Proceedings of the 15th International Workshop on Database and Expert
Systems Applications, pp. 694–698. IEEE Computer Society (2004)

187. Hume, D.: A Treatise of Human Nature. Gutenberg eBook (1739). URL
http://www.gutenberg.org/ebooks/4705. (Accessed March 8, 2016)

188. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S–A publish/subscribe protocol for
Wireless Sensor Networks. In: Proceedings of the Third International Conference on Com-
munication Systems Software and Middleware and Workshops (COMSWARE), pp. 791–
798. IEEE (2008)



11 Middleware Support for Self-aware Computing Systems 311

189. Hunt, A., Wanderley, M.M., Paradis, M.: The importance of parameter mapping in electronic
instrument design. In: Proceedings of the International Conference on New Interfaces for
Musical Expression, pp. 1–6. National University of Singapore (2002)

190. IBM: An architectural blueprint for autonomic computing (2003). URL http://www-
03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf. (Accessed March 8, 2016)

191. Iglesia, D.: MobMuPlat (iOS application). Iglesia Intermedia (2013)
192. Intel: Sophisticated library for vector parallelism. http://software.intel.com/en-

us/articles/intel-array-building-blocks/. (Accessed March 8, 2016)
193. Investigating RINA as an Alternative to TCP/IP. URL http://irati.eu. (Accessed March 8,

2016)
194. Ishibuchi, H., Murata, T.: A multiobjective genetic local search algorithm and its applica-

tion to flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews 28(3), 392–403 (1998)

195. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Iterative approach to indicator-based multiobjec-
tive optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp.
3967–3974 (2007)

196. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization. In:
Proceedings of the 3rd International Workshop on Genetic and Evolving Systems (GEFS),
pp. 47–52. IEEE (2008)

197. James, W.: The principles of psychology. Henry Holt & Co. (1890)
198. Janusevskis, J., Riche, R.L., Ginsbourger, D., Girdziusas, R.: Expected Improvements for the

Asynchronous Parallel Global Optimization of Expensive Functions: Potentials and Chal-
lenges. In: Y. Hamadi, M. Schoenauer (eds.) Learning and Intelligent Optimization, pp.
413–418. Springer (2012)

199. Javed, O., Khan, S., Rasheed, Z., Shah, M.: Camera Handoff: Tracking in Multiple Un-
calibrated Stationary Cameras. In: Proceedings of the Workshop on Human Motion, pp.
113–118. IEEE Computer Society Press (2000). DOI 10.1109/HUMO.2000.897380

200. Javed, O., Rasheed, Z., Shafique, K., Shah, M.: Tracking across Multiple Cameras Disjoint
Views. In: Proceedings of IEEE International Conference on Computer Vision, p. 952–957
(2003)

201. Jia, J., Veeravalli, B., Ghose, D.: Adaptive load distribution strategies for divisible load pro-
cessing on resource unaware multilevel tree networks. IEEE Transactions on Computers
56(7), 999–1005 (2007)

202. Jin, Q., Becker, T., Luk, W., Thomas, D.: Optimising explicit finite difference option pricing
for dynamic constant reconfiguration. In: Proceedings of the International Conference on
Field Programmable Logic and Applications (FPL), pp. 165–172 (2012)

203. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approx-
imate fitness functions. IEEE Transactions on Evolutionary Computation 6(5), 481–494
(2002)

204. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box
functions. Journal of Global Optimization 13(4), 455–492 (1998)

205. Jones, P., Cho, Y., Lockwood, J.: Dynamically optimizing FPGA applications by monitoring
temperature and workloads. In: Proceedings of the International Conference on VLSI Design
(VLSID). IEEE (2007)

206. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-Learning-Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 34(7), 1409–1422 (2012)

207. Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Journal of
Fluids Engineering 82(1), 35–45 (1960)

208. Kamil, S., Chan, C., Oliker, L., Shalf, J., Williams, S.: An auto-tuning framework for parallel
multicore stencil computations. In: Proceedings of the IEEE International Symposium on
Parallel & Distributed Processing (IPDPS), pp. 1–12 (2010)

209. Kang, J., Cohen, I., Medioni, G.: Continuous Tracking within and across Camera Streams.
In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 267–
272 (2003)



312 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

210. Kant, I.: The critique of pure reason. Gutenberg eBook (1781). URL
http://www.gutenberg.org/ebooks/4280. Digital edition 2003 (Accessed March 8, 2016)

211. Kela, J., Korpipää, P., Mäntyjärvi, J., Kallio, S., Savino, G., Jozzo, L., Marca, D.:
Accelerometer-based gesture control for a design environment. Personal and Ubiquitous
Computing 10(5), 285–299 (2006)

212. Keller, A., Borkmann, D., Neuhaus, S., Happe, M.: Self-Awareness in Computer Net-
works. International Journal of Reconfigurable Computing pp. 1–10 (2014). DOI
10.1155/2014/692076

213. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer 36(1),
41–50 (2003)

214. Kettnaker, V., Zabith, R.: Bayesian Multi-Camera Surveillance. In: Proceedings of the Inter-
national Conference on Computer Vision and Pattern Recognition, pp. 117–123 (1999)

215. Khan, M.I., Rinner, B.: Energy-aware task scheduling in wireless sensor networks based
on cooperative reinforcement learning. In: Proceedings of the International Conference on
Communications Workshops (ICCW). IEEE (2014). DOI 10.1109/ICCW.2014.6881310

216. Khare, V., Yao, X., Deb, K.: Performance scaling of multi-objective evolutionary algorithms.
In: Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science, vol.
2632, pp. 376–390. Springer (2003)

217. Kim, H.S., Sherman, D.K.: Express yourself: Culture and the effect of self-expression
on choice. Journal of Personality and Social Psychology 92(1), 1–11 (2007). DOI
10.1037/0022-3514.92.1.1

218. Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., Lee, J.: OpenCL as a unified programming model for
heterogeneous CPU/GPU clusters. In: Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPOPP), pp. 299–300 (2012)

219. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Transactions on
Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

220. Klinglmayr, J., Bettstetter, C.: Self-organizing synchronization with inhibitory-coupled os-
cillators: Convergence and robustness. ACM Transactions on Autonomous and Adaptive
Systems 7(3), 30:1–30:22 (2012)

221. Klinglmayr, J., Kirst, C., Bettstetter, C., Timme, M.: Guaranteeing global synchronization in
networks with stochastic interactions. New Journal of Physics 14(7), 1–13 (2012)

222. Knutzen, H., Nymoen, K., Torresen, J.: PheroMusic [iOS application]. URL
http://itunes.apple.com/app/pheromusic/id910100415

223. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: An ensemble method for drifting
concepts. Journal of Machine Learning Research 8, 2755–2790 (2007)

224. Koski, J., Silvennoinen, R.: Norm methods and partial weighting in multicriterion optimiza-
tion of structures. International Journal for Numerical Methods in Engineering 24(6), 1101–
1121 (1987)

225. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Soft-
ware Engineering (FoSE), pp. 259–268. IEEE (2007)

226. Krishnamoorthy, S., Baskaran, M., Bondhugula, U., Ramanujam, J., Rountev, A., Sadayap-
pan, P.: Effective automatic parallelization of stencil computations. In: Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 235–244 (2007)

227. Kuhn, H.W., Yaw, B.: The Hungarian Method for the Assignment Problem. Naval Research
Logistics Quarterly pp. 83–97 (1955)

228. Kuncheva, L.I.: A theoretical study on six classifier fusion strategies. IEEE Transactions on
Pattern Analysis and Machine Intelligence 24(2), 281–286 (2002)

229. Kurek, M., Becker, T., Chau, T.C., Luk, W.: Automating Optimization of Reconfigurable
Designs. In: Proceedings of the International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 210–213. IEEE (2014). DOI 10.1109/FCCM.2014.65

230. Kurek, M., Becker, T., Luk, W.: Parametric Optimization of Reconfigurable Designs Using
Machine Learning. In: Proceedings of the International Conference on Reconfigurable Com-
puting: Architectures, Tools and Applications (ARC), Lecture Notes in Computer Science,
vol. 7806, pp. 134–145. Springer (2013)



11 Middleware Support for Self-aware Computing Systems 313

231. Legrain, L., Cleeremans, A., Destrebecqz, A.: Distinguishing three levels in explicit self-
awareness. Consciousness and Cognition 20, 578–585 (2011)

232. Legrand, D.: Pre-reflective self-as-subject from experiential and empirical perspectives. Con-
sciousness and Cognition 16(3), 583–599 (2007)

233. Leidenfrost, R., Elmenreich, W.: Firefly clock synchronization in an 802.15. 4 wireless net-
work. EURASIP Journal on Embedded Systems 2009, 7:1–7:17 (2009)

234. Leland, W., Taqqu, M., Willinger, W., Wilson, D.: On the self-similar nature of ethernet
traffic (extended version). IEEE/ACM Transactions on Networking 2(1), 1–15 (1994). DOI
10.1109/90.282603

235. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: Binary robust invariant scalable keypoints.
In: Proceedings of the International Conference on Computer Vision, pp. 2548–2555. IEEE
(2011). DOI 10.1109/iccv.2011.6126542

236. Lewis, P.R., Chandra, A., Faniyi, F., Glette, K., Chen, T., Bahsoon, R., Torresen, J., Yao, X.:
Architectural aspects of self-aware and self-expressive computing systems: From psychology
to engineering. IEEE Computer 48(8), 62–70 (2015)

237. Lewis, P.R., Chandra, A., Parsons, S., Robinson, E., Glette, K., Bahsoon, R., Torresen, J.,
Yao, X.: A Survey of Self-Awareness and Its Application in Computing Systems. In: Pro-
ceedings of the International Conference on Self-Adaptive and Self-Organizing Systems
Workshops (SASOW), pp. 102–107. IEEE Computer Society, Ann Arbor, MI, USA (2011)

238. Lewis, P.R., Esterle, L., Chandra, A., Rinner, B., Torresen, J., Yao, X.: Static, Dynamic,
and Adaptive Heterogeneity in Distributed Smart Camera Networks. ACM Transactions on
Autonomous and Adaptive Systems 10(2), 8:1–8:30 (2015). DOI 10.1145/2764460

239. Lewis, P.R., Esterle, L., Chandra, A., Rinner, B., Yao, X.: Learning to be Different: Het-
erogeneity and Efficiency in Distributed Smart Camera Networks. In: Proceedings of the
International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 209–
218. IEEE Computer Society Press (2013). DOI 10.1109/SASO.2013.20

240. Lewis, P.R., Marrow, P., Yao, X.: Resource Allocation in Decentralised Computational Sys-
tems: An Evolutionary Market Based Approach. Autonomous Agents and Multi-Agent Sys-
tems 21(2), 143–171 (2010)

241. Lewis, P.R., Platzner, M., Yao, X.: An outlook for self-awareness in computing systems.
Awareness Magazine (2012). DOI 10.2417/3201203.004093

242. Li, B., Li, J., Tang, K., Yao, X.: An improved Two Archive Algorithm for Many-Objective
Optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC),
pp. 2869–2876 (2014)

243. Li, G., Gopalakrishnan, G.: Scaleable SMT-based verification of GPU kernel functions. In:
Proceedings of the Eighteenth International Symposium on the Foundations of Software En-
gineering (FSE-18) (2010)

244. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets,
MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation 13(2), 284–302
(2009)

245. Li, Y., Bhanu, B.: Utility-based Camera Assignment in a Video Network: A Game Theoretic
Framework. Sensors Journal 11(3), 676–687 (2011)

246. Liang, C.J.M., Liu, J., Luo, L., Terzis, A., Zhao, F.: RACNet: A High-Fidelity Data Center
Sensing Network. Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems pp. 15–28 (2009)

247. Liu, J., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: Accelerometer-based per-
sonalized gesture recognition and its applications. Pervasive and Mobile Computing 5(6),
657–675 (2009)

248. Liu, Y., Yao, X.: Ensemble learning via negative correlation. Neural Networks 12(10), 1399–
1404 (1999)

249. Lübbers, E., Platzner, M.: Cooperative multithreading in dynamically reconfigurable sys-
tems. In: Proceedings of the International Conference on Field Programmable Logic and
Applications (FPL), pp. 1–4. IEEE (2009)

250. Lübbers, E., Platzner, M.: ReconOS: Multithreaded programming for reconfigurable com-
puters. ACM Transactions on Embedded Computing Systems 9 (2009)



314 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

251. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to
stereo vision. In: Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pp. 674–679 (1981)

252. Maggio, M., Hoffmann, H., Santambrogio, M.D., Agarwal, A., Leva, A.: A comparison of
autonomic decision making techniques. Tech. Rep. MIT-CSAIL-TR-2011-019, Computer
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (2011)

253. Makris, D., Ellis, T., Black, J.: Bridging the Gaps between Cameras. In: Proceedings of
Conference on Computer Vision and Pattern Recognition, vol. 2 (2004)

254. Marler, R.T., Arora, J.S.: Function-transformation methods for multi-objective optimization.
Engineering Optimization 37(6), 551–570 (2005)

255. Marrow, P.: Nature-inspired computing technology and applications. BT Technology Journal
18(4), 13–23 (2000)

256. Marsaglia, G., Bray, T.A.: A convenient method for generating normal variables. SIAM
Review 6(3), 260–264 (1964)

257. Masahiro, N., Takaesu, H., Demachi, H., Oono, M., Saito, H.: Development of an automatic
music selection system based on runner’s step frequency. In: Proceedings of the 2008 Inter-
national Conference on Music Information Retrieval, pp. 193–8 (2008)

258. Massie, M.L., Chun, B.N., Culler, D.E.: The Ganglia distributed monitoring system: design,
implementation, and experience. Parallel Computing 30, 817–840 (2004)

259. Mathar, R., Mattfeldt, J.: Pulse-coupled decentral synchronization. SIAM Journal on Applied
Mathematics 56(4), 1094–1106 (1996)

260. Max [computer software]. URL http://cycling74.com. (Accessed March 8, 2016)
261. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting

values of input variables in the analysis of output from a computer code. Technometrics pp.
55–61 (2000)

262. Mehta, N.R., Medvidovic, N.: Composing architectural styles from architectural primi-
tives. In: Proceedings of the European Software Engineering Conference and ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, pp. 347–350 (2003). URL
http://dblp.uni-trier.de/db/conf/sigsoft/fse2003.html#MehtaM03

263. Menasce, D.A., Sousa, J.a.P., Malek, S., Gomaa, H.: QoS Architectural Patterns for Self-
architecting Software Systems. In: Proceedings of the 7th International Conference on Au-
tonomic Computing (ICAC), pp. 195–204. ACM (2010). DOI 10.1145/1809049.1809084

264. Metcalfe, J., Shimamura, A.P. (eds.): Metacognition: Knowing about knowing. MIT Press,
Cambridge, MA, USA (1994)

265. Michalski, R.S.: A Theory and Methodology of Inductive Learning. In: Machine Learning,
Symbolic Computation, pp. 83–134. Springer Berlin Heidelberg (1983)

266. Miettinen, K., Mäkelä, M.M.: Interactive bundle-based method for nondifferentiable multi-
objective optimization: nimbus. Optimization Journal 34(3), 231–246 (1995)

267. Minku, L.L.: Online ensemble learning in the presence of concept drift. Ph.D. thesis, School
of Computer Science, University of Birmingham, Birmingham, UK (2010)

268. Minku, L.L., Yao, X.: DDD: A new ensemble approach for dealing with concept drift. IEEE
Transactions on Knowledge and Data Engineering 24(4), 619–633 (2012)

269. Minku, L.L., Yao, X.: Software Effort Estimation as a Multi-objective Learning Problem.
ACM Transactions on Software Engineering and Methodology 22(4), 35:1–32 (2013)

270. Miranda, E.R., Wanderley, M.: New Digital Musical Instruments: Control and Interaction
Beyond the Keyboard. A-R Editions, Inc., Middleton, WI (2006)

271. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM
Journal on Applied Mathematics 50(6), 1645–1662 (1990)

272. Mitchell, M.: Self-awareness and control in decentralized systems. In: Proceedings of
the AAAI Spring Symposium on Metacognition in Computation (2005). Available at
http://www.cs.pdx.edu/ mm/self-awareness.pdf

273. Modler, P.: Neural networks for mapping hand gestures to sound synthesis parameters,
vol. 18, p. 14. IRCAM — Centre Pompidou (2000)



11 Middleware Support for Self-aware Computing Systems 315

274. Moens, B., van Noorden, L., Leman, M.: D-Jogger: Syncing music with walking. In: Pro-
ceedings of the Sound and Music Computing Conference, pp. 451–456. Barcelona, Spain
(2010)

275. Morin, A.: Levels of consciousness and self-awareness: A comparison and integration of
various neurocognitive views. Consciousness and Cognition 15(2), 358–71 (2006)

276. Morin, A., Everett, J.: Conscience de soi et langage interieur: Quelques speculations. [Self-
awareness and inner speech: Some speculations]. Philosophiques XVII(2), 169–188 (1990)

277. Müller-Schloer, C., Schmeck, H., Ungerer, T.: Organic computing: a paradigm shift for com-
plex systems. Springer (2011)

278. Nakashima, H., Aghajan, H., Augusto, J.C.: Handbook of ambient intelligence and smart
environments. Springer (2009)

279. Narukawa, K., Tanigaki, Y., Ishibuchi, H.: Evolutionary many-objective optimization using
preference on hyperplane. In: Proceedings of the 2014 Conference on Genetic and Evolu-
tionary Computation Companion, pp. 91–92. ACM (2014)

280. Natarajan, P., Atrey, P.K., Kankanhalli, M.: Multi-camera coordination and control in surveil-
lance systems: A survey. ACM Transactions on Multimedia Computing, Communications
and Applications 11(4), 57:1–57:30 (2015). DOI 10.1145/2710128

281. Nebehay, G., Chibamu, W., Lewis, P.R., Chandra, A., Pflugfelder, R., Yao, X.: Can diversity
amongst learners improve online object tracking? In: Z.H. Zhou, F. Roli, J. Kittler (eds.)
Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 7872, pp. 212–223.
Springer (2013). DOI 10.1007/978-3-642-38067-9 19

282. Nebehay, G., Pflugfelder, R.: Consensus-based matching and tracking of keypoints for object
tracking. In: Proceedings of the Winter Conference on Applications of Computer Vision
(WACV). IEEE (2014)

283. Nebro, A.J., Luna, F., Alba, E., Beham, A., Dorronsoro, B.: AbYSS: adapting scatter search
for multiobjective optimization. Tech. Rep. ITI-2006-2, Departamento de Lenguajes y Cien-
cias de la Computación, University of Málaga, Malaga (2006)

284. Neisser, U.: The Roots of Self-Knowledge: Perceiving Self, It, and Thou. Annals of the NY
AoS. 818, 19–33 (1997)

285. netem. URL http://www.linuxfoundation.org/collaborate/workgroups/networking/netem.
(Accessed March 8, 2016)

286. Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-D blocking optimization for
stencil computations on modern CPUs and GPUs. In: Proceedings of the ACM/IEEE Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 1–13 (2010)

287. Niezen, G., Hancke, G.P.: Evaluating and optimising accelerometer-based gesture recogni-
tion techniques for mobile devices. In: Proceedings of AFRICON, pp. 1–6. IEEE (2009)

288. Nishida, K.: Learning and detecting concept drift. Ph.D. thesis, Hokkaido University (2008).
URL http://lis2.huie.hokudai.ac.jp/ knishida/paper/nishida2008-dissertation.pdf

289. Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. In: Proceedings
of the Tenth International Conference on Discovery Science (DS) - Lecture Notes in Artificial
Intelligence, vol. 3316, pp. 264–269. Sendai, Japan (2007)

290. Niu, X., Chau, T.C.P., Jin, Q., Luk, W., Liu, Q.: Automating elimination of idle functions by
run-time reconfiguration. In: Proceedings of the 21st IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pp. 97–104 (2013)

291. Niu, X., Coutinho, J.G.F., Luk, W.: A scalable design approach for stencil computation on
reconfigurable clusters. In: Proceedings of the 23rd International Conference on Field pro-
grammable Logic and Applications (FPL), pp. 1–4 (2013)

292. Niu, X., Jin, Q., Luk, W., Liu, Q., Pell, O.: Exploiting run-time reconfiguration in stencil
computation. In: Proceedings of the 22nd International Conference on Field programmable
Logic and Applications (FPL), pp. 173–180 (2012)

293. Niu, X., Tsoi, K.H., Luk, W.: Reconfiguring distributed applications in FPGA accelerated
cluster with wireless networking. In: Proceedings of the 21st International Conference on
Field Programmable Logic and Applications (FPL), pp. 545–550 (2011)



316 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

294. NVIDIA: Cuda zone. http://www.nvidia.com/object/cuda home new.html. (Accessed March
8, 2016)

295. Nymoen, K., Chandra, A., Glette, K., Torresen, J.: Decentralized harmonic synchronization
in mobile music systems. In: Proceedings of the International Conference on Awareness
Science & Technology (iCAST), pp. 1–6 (2014)

296. Nymoen, K., Chandra, A., Glette, K., Torresen, J., Voldsund, A., Jensenius, A.R.: Phero-
Music: Navigating a Musical Space for Active Music Experiences. In: Proceedings of the
International Computer Music Conference (ICMC) joint with the Sound and Music Comput-
ing Conference, pp. 1715–1718 (2014)

297. Nymoen, K., Song, S., Hafting, Y., Torresen, J.: Funky Sole Music: Gait recognition and
adaptive mapping. In: Proceedings of the International Conference on New Interfaces for
Musical Expression (NIME), pp. 299–302 (2014)

298. Okuma, K., Taleghani, A., de Freitas, N., Little, J., Lowe, D.: A Boosted Particle Filter: Mul-
titarget Detection and Tracking. In: Proceedings of 8th European Conference on Computer
Vision, vol. 3021, pp. 28–39 (2004)

299. Olfati-Saber, R.: Distributed Kalman filtering for sensor networks. In: Proceed-
ings of the Conference on Decision and Control, pp. 5492–5498 (2007). DOI
10.1109/CDC.2007.4434303

300. Olsson, R.A., Keen, A.W.: Remote procedure call. The JR Programming Language: Concur-
rent Programming in an Extended Java pp. 91–105 (2004)

301. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally expensive
problems via surrogate modeling. AIAA Journal 41(4), 689–696 (2003)

302. Ontañón, S., Plaza, E.: Multiagent Inductive Learning: An Argumentation-based Approach.
In: J. Fürnkranz, T. Joachims (eds.) Proceedings of the 27th International Conference on
Machine Learning (ICML), pp. 839–846. Omnipress, Haifa, Israel (2010)

303. Oxford: Oxford dictionaries: Adapt. http://www.oxforddictionaries.com/definition/english/adapt.
(Accessed March 8, 2016)

304. Oza, N.C.: Online bagging and boosting. In: Proceedings of the IEEE International Confer-
ence on Systems, Man and Cybernetics, pp. 2340–2345 (2005)

305. Oza, N.C., Russell, S.: Experimental comparisons of online and batch versions of bagging
and boosting. In: Proceedings of the seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 359–364 (2001)

306. Özuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast Keypoint Recognition Using Random
Ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(3), 448–461
(2010). DOI 10.1109/tpami.2009.23

307. Page, I., Luk, W.: Compiling occam into Field-Programmable Gate Arrays. In: Proceedings
of the International Conference on Field programmable Logic and Applications (FPL) (1991)

308. Papakonstantinou, A., Liang, Y., Stratton, J.A., Gururaj, K., Chen, D., Hwu, W.W., Cong, J.:
Multilevel Granularity Parallelism Synthesis on FPGAs. In: Proceedings of the 19th Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM),
pp. 178–185. IEEE (2011)

309. Parashar, M., Hariri, S.: Autonomic computing: an overview. In: Proceedings of the Inter-
national Conference on Unconventional Programming Paradigms, pp. 257–269. Springer-
Verlag, Berlin (2005)

310. Parsons, S., Bahsoon, R., Lewis, P.R., Yao, X.: Towards a better understanding of self-
awareness and self-expression within software systems. Tech. Rep. CSR-11-03, University
of Birmingham, School of Computer Science, UK (2011)

311. Paul, C., Bass, L., Kazman, R.: Software Architecture in Practice. MA: Addison-Wesley
(1998)

312. Paul, C., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and Case Stud-
ies. Addison-Wesley (2002)

313. Paulson, L.: DARPA creating self-aware computing. IEEE Computer 36(3), 24 (2003). DOI
10.1109/MC.2003.1185213

314. Peleg, A., Wilkie, S., Weiser, U.C.: Intel MMX for Multimedia PCs. Communications of the
ACM 40(1), 24–38 (1997)



11 Middleware Support for Self-aware Computing Systems 317

315. Perkowitz, M., Philipose, M., Fishkin, K., Patterson, D.J.: Mining models of human activities
from the Web. In: Proceedings of the 13th International Conference on World Wide Web,
pp. 573–582 (2004)

316. Perrone, M., Liu, L.K., Lu, L., Magerlein, K., Kim, C., Fedulova, I., Semenikhin, A.: Re-
ducing Data Movement Costs: Scalable Seismic Imaging on Blue Gene. In: Proceedings of
the 26th International Parallel & Distributed Processing Symposium (IPDPS), pp. 320–329
(2012)

317. Perrone, M.P., Cooper, L.N.: When networks disagree: Ensemble methods for hybrid neural
networks. Neural Networks for Speech and Image Processing, Chapman-Hall, New York pp.
126–142 (1993)

318. Peskin, C.S.: Mathematical aspects of heart physiology. Courant Institute of Mathematical
Sciences, New York University New York (1975)

319. Pflugfelder, R., Bischof, H.: People Tracking across Two Distant Self-calibrated Cameras.
In: Proceedings of International Conference on Advanced Video and Signal-based Surveil-
lance. IEEE Computer Society Press (2006)

320. Pflugfelder, R., Bischof, H.: Tracking across Non-overlapping Views Via Geometry. In:
Proceedings of the International Conference on Pattern Recognition (2008)

321. Phelps, S., McBurney, P., Parsons, S.: Evolutionary mechanism design: A review. Au-
tonomous Agents and Multi-Agent Systems 21(2), 237–264 (2010)

322. Piciarelli, C., Esterle, L., Khan, A., Rinner, B., Foresti, G.: Dynamic Reconfiguration in
Camera Networks: a short survey. IEEE Transactions on Circuits and Systems for Video
Technology PP(99), 1–13 (2015). DOI 10.1109/TCSVT.2015.2426575. (early access)

323. Pilato, C., Loiacono, D., Tumeo, A., Ferrandi, F., Lanzi, P.L., Sciuto, D.: Speeding-up expen-
sive evaluations in highlevel synthesis using solution modeling and fitness inheritance. In:
Y. Tenne, C.K. Goh (eds.) Computational Intelligence in Expensive Optimization Problems,
vol. 2, pp. 701–723. Springer (2010)

324. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits and Systems Maga-
zine 6(3), 21–45 (2006)

325. Polikar, R., Udpa, L., Udpa, S., Honavar, V.: Learn++: An incremental learning algorithm
for supervised neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews 31(4), 497–508 (2001)

326. Puckette, M.: Pure Data (PD) (software). URL http://puredata.info. (Accessed March 8,
2016)

327. Pylvänäinen, T.: Accelerometer based gesture recognition using continuous HMMs. In: Pat-
tern Recognition and Image Analysis, pp. 639–646. Springer (2005)

328. Quaritsch, M., Kreuzthaler, M., Rinner, B., Bischof, H., Strobl, B.: Autonomous Multicamera
Tracking on Embedded Smart Cameras. EURASIP Journal on Embedded Systems 2007(1),
35–45 (2007)

329. Rajko, S., Qian, G., Ingalls, T., James, J.: Real-time gesture recognition with minimal training
requirements and on-line learning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2007)

330. Ramamurthy, S., Bhatnagar, R.: Tracking recurrent concept drift in streaming data using en-
semble classifiers. In: Proceedings of the Sixth International Conference on Machine Learn-
ing and Applications (ICMLA), pp. 404–409. Cincinnati, Ohio (2007)

331. Rammer, I., Szpuszta, M.: Advanced .NET Remoting. Springer (2005)
332. Ramos, C., Augusto, J.C., Shapiro, D.: Ambient intelligence - the next step for artificial

intelligence. IEEE Intelligent Systems 23(2), 15–18 (2008). DOI 10.1109/MIS.2008.19
333. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press (2006)
334. Reason [computer software]. URL https://www.propellerheads.se. (Accessed March 8, 2016)
335. ReconOS: A programming model and OS for reconfigurable hardware (2013). URL

http://www.reconos.de/. (Accessed March 8, 2016)
336. Reisslein, M., Rinner, B., Roy-Chowdhury, A.: Smart camera networks. IEEE Computer

47(5), 26–28 (2014)
337. Reyes, R., de Sande, F.: Automatic code generation for gpus in llc. The Journal of Super-

computing 58(3), 349–356 (2011)



318 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

338. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a generic
observer/controller architecture for organic computing. In: C. Hochberger, R. Liskowsky
(eds.) INFORMATIK 2006 – Informatik für Menschen, LNI, vol. P-93, pp. 112–119. Bonner
Köllen Verlag (2006)

339. Rietmann, M., Messmer, P., Nissen-Meyer, T., Peter, D., Basini, P., Komatitsch, D., Schenk,
O., Tromp, J., Boschi, L., Giardini, D.: Forward and adjoint simulations of seismic wave
propagation on emerging large-scale GPU architectures. In: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis (SC) (2012)

340. Rinner, B., Esterle, L., Simonjan, J., Nebehay, G., Pflugfelder, R., Fernandez, G., Lewis, P.R.:
Self-Aware and Self-Expressive Camera Networks. IEEE Computer 48(7), 33–40 (2015)

341. Rinner, B., Winkler, T., Schriebl, W., Quaritsch, M., Wolf, W.: The evolution from sin-
gle to pervasive smart cameras. In: Proceedings of the Second ACM/IEEE Interna-
tional Conference on Distributed Smart Cameras (ICDSC), pp. 1–10 (2008). DOI
10.1109/ICDSC.2008.4635674

342. Rinner, B., Wolf, W.: Introduction to Distributed Smart Cameras. Proceedings of the IEEE
96(10), 1565–1575 (2008). DOI 10.1109/JPROC.2008.928742

343. RNA: Recursive Network Architecture. URL http://www.isi.edu/rna. (Accessed March 8,
2015)

344. Rochat, P.: Five levels of self-awareness as they unfold in early life. Consciousness and
Cognition 12, 717–731 (2003)

345. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach, 3 edn. Pearson Edu-
cation (2010)

346. Saaty, T.L.: The Analytical Hierarchical Process. McGraw-Hill (1980)
347. Sakellari, G.: The cognitive packet network: A survey. The Computer Journal 53 (2010)
348. SanMiguel, J.C., Shoop, K., Cavallaro, A., Micheloni, C., Foresti, G.L.: Self-Reconfigurable

Smart Camera Networks. IEEE Computer 47(5), 67–73 (2014)
349. Santambrogio, M., Hoffmann, H., Eastep, J., Agarwal, A.: Enabling technologies for self-

aware adaptive systems. In: 2010 NASA/ESA Conference on Adaptive Hardware and Sys-
tems (AHS), pp. 149–156. IEEE (2010)

350. Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: PROST: Parallel robust online
simple tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 723–730 (2010)

351. Schaumeier, J., Jeremy Pitt, J., Cabri, G.: A tripartite analytic framework for characterising
awareness and self-awareness in autonomic systems research. In: Proceedings of the Sixth
IEEE Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASOW), pp.
157–162 (2012)

352. Schlömer, T., Poppinga, B., Henze, N., Boll, S.: Gesture recognition with a Wii controller.
In: Proceedings of the 2nd International Conference on Tangible and Embedded Interaction,
pp. 11–14. ACM (2008)

353. Schmeck, H.: Organic computing - a new vision for distributed embedded systems. In: Pro-
ceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC), pp. 201–203 (2005)

354. Schmickl, T., Thenius, R., Moslinger, C., Timmis, J., Tyrrell, A., Read, M., Hilder, J., Hal-
loy, J., Campo, A., Stefanini, C., Manfredi, L., Orofino, S.: CoCoRo–The Self-Aware Un-
derwater Swarm. In: Proceedings of the International Conference on Self-Adaptive and
Self-Organizing Systems Workshops (SASOW), pp. 120–126. IEEE Computer Society, Ann
Arbor, MI, USA (2011)

355. Schnier, T., Yao, X.: Using negative correlation to evolve fault-tolerant circuits. In: Proceed-
ings of the 5th International Conference on Evolvable Systems: From Biology to Hardware
(ICES’2003) – Lecture Notes in Computer Science, vol. 2606, pp. 35–46. Springer-Verlag
(2003)

356. Scholz, M., Klinkenberg, R.: Boosting classifiers for drifting concepts. Intelligent Data Anal-
ysis 11(1), 3–28 (2007)

357. Sharan, K.: Java remote method invocation. In: Beginning Java 8 APIs, Extensions and
Libraries, chap. 7, pp. 525–548. Springer (2014)



11 Middleware Support for Self-aware Computing Systems 319

358. Shaw, M.J., Sikora, R.: A distributed problem-solving approach to inductive learning. Tech.
Rep. CMU-RI-TR-90-262, School of Computer Science, Carnegie Mellon University (1990)

359. Shipp, C.A., Kuncheva, L.I.: Relationships between combination methods and measures of
diversity in combining classifiers. Information Fusion 3(2), 135–148 (2002)

360. Showerman, M., Enos, J., Pant, A., Kindratenko, V., Steffen, C., Pennington, R., mei Hwu,
W.: QP: A heterogeneous multi-acceleator cluster. In: Proceedings of the International Con-
ference on High-Performance Clustered Computing (2009)

361. Shukla, S.K., Yang, Y., Bhuyan, L.N., Brisk, P.: Shared memory heterogeneous computation
on PCIe-supported platforms. In: Proceedings of the 23rd International Conference on Field
programmable Logic and Applications (FPL), pp. 1–4 (2013)

362. Simonjan, J., Esterle, L., Rinner, B., Nebehay, G., Dominguez, G.F.: Demonstrating au-
tonomous handover in heterogeneous multi-camera systems. In: Proceedings of the In-
ternational Conference on Distributed Smart Cameras, pp. 43:1–43:3 (2014). DOI
10.1145/2659021.2669474

363. Sironi, F., Bartolini, D.B., Campanoni, S., Cancare, F., Hoffmann, H., Sciuto, D., Santambro-
gio, M.D.: Metronome: Operating System Level Performance Management via Self-adaptive
Computing. In: Proceedings of the Design Automation Conference (DAC). ACM (2012)

364. Sironi, F., Cuoccio, A., Hoffmann, H., Maggio, M., Santambrogio, M.: Evolvable Systems
on Reconfigurable Architecture via Self-aware Adaptive Applications. In: Proceedings of
the NASA/ESA Conference on Adaptive Hardware and Systems (AHS) (2011). DOI
10.1109/AHS.2011.5963933

365. Sironi, F., Triverio, M., Hoffmann, H., Maggio, M., Santambrogio, M.: Self-aware Adap-
tation in FPGA-based Systems. In: Proceedings of the International Conference on Field
Programmable Logic and Applications. IEEE (2010)

366. Smallwood, J., McSpadden, M., Schooler, J.: The lights are on but no one’s home: meta-
awareness and the decoupling of attention when the mind wanders. Psychonomic Bulletin
and Review 14(3), 527–533 (2007)

367. Song, S., Chandra, A., Torresen, J.: An ant learning algorithm for gesture recognition with
one-instance training. In: Proceedings of the International Congress on Evolutionary Com-
putation (CEC), pp. 2956–2963. IEEE (2013)

368. SRC Computers, L.: SRC-7 MAPstation. Tech. rep., SRC Computers (2009)
369. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic

algorithms. Evolutionary Computation 2(3), 221–248 (1994)
370. Stanley, K.O.: Learning concept drift with a committee of decision trees. Tech. Rep. UT-AI-

TR-03-302, Department of Computer Sciences, University of Texas at Austin (2003)
371. Sterritt, R., Parashar, M., Tianfield, H., Unland, R.: A concise introduction to autonomic

computing. Advanced Engineering Informatics 19(3), 181–187 (2005)
372. Steuer, R.E., Choo, E.U.: An interactive weighted Tchebycheff procedure for multiple ob-

jective programming. Mathematical Programming 26(3), 326–344 (1983)
373. Stone, P.: Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer.

MIT Press (2000)
374. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik pp. 13:354–356

(1969)
375. Street, W., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification.

In: Proceedings of the Seventh ACM International Conference on Knowledge Discovery and
Data Mining (KDD), pp. 377–382. New York (2001)

376. Strenski, D.: The Cray XD1 computer and its reconfigurable architecture. Tech. rep., Cray
Inc. (2005)

377. Strey, A., Bange, M.: Performance Analysis of Intel’s MMX and SSE: A Case Study. In:
Proceedings of 7th International Euro-Par Conference on Parallel Processing (Euro-Par), pp.
142–147. Manchester, UK (2001)

378. Susanto, K.W., Todman, T., Coutinho, J.G.F., Luk, W.: Design Validation by Symbolic Sim-
ulation and Equivalence Checking: A Case Study in Memory Optimization for Image Ma-
nipulation, LNCS, vol. 5404, pp. 509–520. Springer (2009)



320 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

379. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in software. Dr.
Dobb’s Journal (2005)

380. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)
381. Taj, M., Cavallaro, A.: Distributed and decentralized multi-camera tracking. IEEE Signal

Processing Magazine 28(3), 46–58 (2011)
382. Tawney, G.A.: Feeling and self-awareness. Psyc. Rev. 9(6), 570 – 596 (1902)
383. Tesauro, G.: Reinforcement learning in autonomic computing: A manifesto and case studies.

IEEE Internet Computing 11(1), 22–30 (2007)
384. Thomas, D., Luk, W.: Non-uniform random number generation through piecewise linear

approximations. In: Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL), pp. 1–6 (2006)

385. Thomas, D.B., Luk, W.: Credit Risk Modelling using Hardware Accelerated Monte-
Carlo Simulation. In: Proceedings of the 16th IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 229–238 (2008)

386. Todman, T., Boehm, P., Luk, W.: Verification of streaming hardware and software code-
signs. In: Proceedings of the International Conference on Field Programmable Technology
(ICFPT), pp. 147–150. IEEE (2012)

387. Todman, T., Stilkerich, S.C., Luk, W.: Using Statistical Assertions to Guide Self-Adaptive
Systems. International Journal of Reconfigurable Computing 2014, 1–8 (2014). DOI
10.1155/2014/724585

388. Tong, X., Ngai, E.: A ubiquitous publish/subscribe platform for wireless sensor networks
with mobile mules. In: Proceedings of the IEEE Eighth International Conference on Dis-
tributed Computing in Sensor Systems (DCOSS), pp. 99–108 (2012)

389. Torresen, J., Hafting, Y., Nymoen, K.: A new Wi-Fi based platform for wireless sensor data
collection. In: Proceedings of the International Conference on New Interfaces for Musical
Expression, pp. 337–340 (2013)

390. Torresen, J., Plessl, C., Yao, X.: Special Issue on “Self-Aware and Self-Expressive Systems”.
IEEE Computer 48(7), 45–51 (2015)

391. Touch, J., Pingali, V.: The RNA Metaprotocol. In: Proceedings of the International
Conference on Computer Communications and Networks, pp. 1–6 (2008). DOI
10.1109/ICCCN.2008.ECP.46

392. Trucco, E., Plakas, K.: Video Tracking: A Concise Survey. Journal of Oceanic Engineering
31(2), 520–529 (2006)

393. Tse, A.H.T., Chow, G.C.T., Jin, Q., Thomas, D.B., Luk, W.: Optimising performance of
quadrature methods with reduced precision. In: Proceedings of the International Conference
on Reconfigurable Computing: Architectures, Tools and Applications (ARC), Lecture Notes
in Computer Science, vol. 7199, pp. 251–263. Springer (2012). DOI 10.1007/978-3-642-
28365-9 21

394. Tse, A.H.T., Thomas, D.B., Tsoi, K.H., Luk, W.: Dynamic scheduling Monte-Carlo frame-
work for multi-accelerator heterogeneous clusters. In: Proceedings of the International Con-
ference on Field-Programmable Technology (FTP), pp. 233–240 (2010)

395. Tsoi, K.H., Luk, W.: Axel: A Heterogeneous Cluster with FPGAs and GPUs. In: Proceed-
ings of the 18th annual ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, pp. 115–124 (2010)

396. Tsymbal, A., Pechenizkiy, M., Cunningham, P., Puuronen, S.: Dynamic integration of clas-
sifiers for handling concept drift. Information Fusion 9(1), 56–68 (2008)

397. Vassev, E., Hinchey, M.: Knowledge representation and awareness in autonomic service-
component ensembles – state of the art. In: 14th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing, pp. 110–119 (2011)

398. Vasudevan, S.: What is assertion-based verification? SIGDA E-News 42(12) (2012)
399. Vermorel, J., Mohri, M.: Multi-Armed Bandit Algorithms and Empirical Evaluation. In: Pro-

ceedings of the European Conference on Machine Learning, pp. 437–448. Springer (2005)
400. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. The Journal of

Finance 16(1), 8–37 (1961)



11 Middleware Support for Self-aware Computing Systems 321

401. Vinoski, S.: CORBA: Integrating diverse applications within distributed heterogeneous envi-
ronments. IEEE Communications Magazine 35(2), 46–55 (1997)

402. Volker, L., Martin, D., El Khayaut, I., Werle, C., Zitterbart, M.: A Node Architecture for 1000
Future Networks. In: Proceedings of the IEEE International Conference on Communications
(ICC), pp. 1–5 (2009). DOI 10.1109/ICCW.2009.5207996

403. Volker, L., Martin, D., Werle, C., Zitterbart, M., El-Khayat, I.: Selecting Concurrent Net-
work Architectures at Runtime. In: Proceedings of the IEEE International Conference on
Communications (ICC), pp. 1–5 (2009). DOI 10.1109/ICC.2009.5199445

404. Wang, J., Brady, D., Baclawski, K., Kokar, M., Lechowicz, L.: The use of ontologies for the
self-awareness of the communication nodes. In: Proceedings of the Software Defined Radio
Technical Conference (SDR), vol. 3 (2003)

405. Wang, S., Minku, L.L., Yao, X.: A learning framework for online class imbalance learn-
ing. In: Proceedings of the IEEE Symposium on Computational Intelligence and Ensemble
Learning (CIEL), pp. 36–45 (2013)

406. Wang, S., Minku, L.L., Yao, X.: Online class imbalance learning and its applications
in fault detection. International Journal of Computational Intelligence and Applications
12(1340001), (1–19) (2013)

407. Wang, S., Minku, L.L., Yao, X.: A multi-objective ensemble method for online class imbal-
ance learning. In: Proceedings of the International Joint Conference on Neural Networks
(IJCNN), pp. 3311–3318. IEEE (2014). DOI 10.1109/IJCNN.2014.6889545

408. Wang, S., Minku, L.L., Yao, X.: Resampling-based ensemble methods for online class im-
balance learning. In: IEEE Transactions on Knowledge and Data Engineering, vol. 27, pp.
1356–1368. IEEE (2015). DOI 10.1109/TKDE.2014.2345380

409. Wang, Z., Tang, K., Yao, X.: A memetic algorithm for multi-level redundancy allocation.
IEEE Transactions on Reliability 59(4), 754–765 (2010)

410. Watson, R.: The Delta-t Transport Protocol: Features and Experience. In: Proceed-
ings 14th Conference on Local Computer Networks, pp. 399–407 (1989). DOI
10.1109/LCN.1989.65288

411. Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., Nagpal, R.: Firefly-inspired sensor net-
work synchronicity with realistic radio effects. In: Proceedings of the 3rd International Con-
ference on Embedded Networked Sensor Systems, pp. 142–153 (2005)

412. Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke, J., An-
dersson, J., Giese, H., Gäschka, K.M.: On patterns for decentralized control in self-adaptive
systems. In: R. Lemos, H. Giese, H. Müller, M. Shaw (eds.) Software Engineering for Self-
Adaptive Systems II, Lecture Notes in Computer Science, vol. 7475, pp. 76–107. Springer
Berlin Heidelberg (2013)

413. Wikipedia: Adaptation (computer science). http://en.wikipedia.org/wiki/Adaptation. (Ac-
cessed March 8, 2016)

414. Winfield, A.: Robots with internal models: a route to self-aware and hence safer robots. In:
J. Pitt (ed.) The Computer After Me. Imperial College Press / World Scientific Book (2014)

415. Wolf, W., Ozer, B., Lv, T.: Smart Cameras as Embedded Systems. IEEE Computer 35(9),
48–53 (2002)

416. Wright, M.: Open Sound Control: an enabling technology for musical networking. Organised
Sound 10(3), 193–200 (2005)

417. Xiao, L., Zhu, Y., Ni, L., Xu, Z.: GridIS: An Incentive-Based Grid Scheduling. In: Proceed-
ings of the 19th IEEE International Parallel and Distributed Processing Symposium, p. 65b
(2005). DOI 10.1109/IPDPS.2005.237

418. Xilinx: SDAccel Development Environment. http://www.xilinx.com/products/design-
tools/sdx/sdaccel.html. (Accessed March 8, 2016)

419. Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing:
A review. Pervasive and Mobile Computing 8(1) (2012)

420. Yiannacouras, P., Steffan, J.G., Rose, J.: VESPA: portable, scalable, and flexible FPGA-
based vector processors. In: Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, pp. 61–70 (2008)



322 Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner

421. Yilmaz, A., Javed, O., Shah, M.: Object Tracking: A Survey. ACM Computing Surveys
38(4), 1–45 (2006)

422. Yin, F., D., M., Velastin, S.: Performance evaluation of object tracking algorithms. In: Pro-
ceedings of the International Workshop on Performance Evaluation of Tracking and Surveil-
lance (2007)

423. Yin, L., Dong, M., Duan, Y., Deng, W., Zhao, K., Guo, J.: A high-performance training-free
approach for hand gesture recognition with accelerometer. Multimedia Tools and Applica-
tions pp. 1–22 (2013)

424. Yu, X., Tang, K., Chen, T., Yao, X.: Empirical analysis of evolutionary algorithms with im-
migrants schemes for dynamic optimization. Memetic Computing 1(1), 3–24 (2009)

425. Zadeh, L.: Optimality and non-scalar-valued performance criteria. IEEE Transactions on
Automatic Control 8(1), 59–60 (1963)

426. Zagal, J.C., Lipson, H.: Towards self-reflecting machines: Two-minds in one robot. In: Ad-
vances in Artificial Life. Darwin Meets von Neumann, Lecture Notes in Computer Science,
vol. 5777, pp. 156–164. Springer (2011)

427. Zambonelli, F., Bicocchi, N., Cabri, G., Leonardi, L., Puviani, M.: On self-adaptation, self-
expression, and self-awareness in autonomic service component ensembles. In: Proceedings
of the Fifth IEEE Conference on Self-Adaptive and Self-Organizing Systems Workshops
(SASOW), pp. 108 –113 (2011)

428. Zarezadeh, A.A., Bobda, C.: Hardware Middleware for Person Tracking on Embedded Dis-
tributed Smart Cameras. Hindawi International Journal of Reconfigurable Computing (2012)

429. Zeppenfeld, J., Bouajila, A., Stechele, W., Bernauer, A., Bringmann, O., Rosenstiel, W.,
Herkersdorf, A.: Applying ASoC to Multi-core Applications for Workload Management. In:
C. Müller-Schloer, H. Schmeck, T. Ungerer (eds.) Organic Computing – A Paradigm Shift
for Complex Systems, Autonomic Systems, vol. 1, pp. 461–472. Springer Basel (2011)

430. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolution-
ary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation 1(1),
32–49 (2011)

431. Ziliani, F., Velastin, S., Porikli, F., Marcenaro, L., Kelliher, T., Cavallaro, A., Bruneaut, P.:
Performance evaluation of event detection solutions: the CREDS experience. In: Proceedings
of the International Conference on Advanced Video and Signal Based Surveillance, pp. 201–
206 (2005)

432. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithm: Em-
pirical Results. Evolutionary Computation 8(2), 173–195 (2000)

433. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Proceedings
of the International Conference on Parallel Problem Solving from Nature (PPSN), vol. 3242,
pp. 832–842 (2004)

434. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary
Algorithm. Tech. Rep. 103, Computer Engineering and Networks Laboratory (TIK), Swiss
Federal Institute of Technology (ETH), Zurich (2001)

435. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and
the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–
271 (1999)

436. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assess-
ment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolution-
ary Computation 7(2), 117–132 (2003)




