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Abstract

Future robotic systems will be situated in highly networked environments where
they communicate with industrial control systems, cloud services or other sy-
stems at remote locations. In this trend of strong digitization of industrial
systems (also sometimes referred to as Industry 4.0), cyber attacks are an in-
creasing threat to the integrity of the robotic systems at the core of this new
development. It is expected, that the Robot Operating System (ROS) will play
an important role in robotics outside of pure research-oriented scenarios. ROS
however has significant security issues which need to be addressed before such
products should reach mass markets. In this paper we present the most common
vulnerabilities of ROS, attack vectors to exploit those and several approaches
to secure ROS and similar systems. We show how to secure ROS on an applica-
tion level and describe a solution which is integrated directly into the ROS core.
Our proposed solution has been implemented and tested with recent versions of
ROS, and adds security to all communication channels without being invasive
to the system kernel itself.
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1. Introduction

The shift towards industry 4.0 implies stronger automatization and hence
increased relevance and use of robots. An Industrial Control System ([CS])
is inherently distributed and connects a potentially huge number of sensors
and actors, whose orchestration exhibits complex dynamics that are typically
fragile and hence vulnerable to attacks. This new technology and the tight
integration and interconnection of components leads to new vulnerabilities and
thus a heightened focus on the security concerns. The particular evolution of
the Robot Operating System (ROS]) happened under time-pressure of industryEl,
which has assigned a secondary (if not ternary) role to security.

In[[CS] the traditional information security triad of Confidentiality, Integrity
and Availability (Confidentiality, Integrity, Availability (CIA]) will often be
assigned different priorities [Il 2. When thinking of user data in information
systems, it is usually more important to keep them confidential than available.
Thus, taking a service offline in response to an attack is often a reasonable
reactiorﬂ In information systems, lost data can often be restored from backups.
However, actions taken by an[[CY (e.g., an actuator damaging its surroundings)
cannot simply be undone by “restoring from the last known good backup”. To
give two examples, if a drone or a hydro dam is under attack, simply shutting
them down is not a valid response. Above all other considerations, such systems’
basic functionality must be available until they reach a safe state (e.g., the drone
has landed or the water reservoir held back by the dam was drained).

The development of has been paralleled by the attack strategies adapting
themselves to the increasing complexity of the victim systems. The resulting
highly complex and extremely well coordinated attacks known as Advanced
Persistent Threats (APTE) [3] 4] dramatically demonstrate the need for security
to become an intrinsic part of the design of a distributed system, rather than a
subsequent add-on that is considered once the availability goal has been reached.

In fact, even though safety beats security in terms of priority, there is no
reliable safety without security. Just imagine the safety precautions of a robot
to depend on reliable sensor data. Injecting malicious packets to mimic some
dangerous situation that forces a robot to react can already cause harm by
itself. Blocking messages can be equally dangerous, if the dropout message was
a notification of a human being in the robot’s way. These two examples (among
more to follow in Section [3|) already exhibit security as a necessity for safety,
and indirectly, also for availability, since accidents typically induce temporal
shutdowns of the production system (and hence economic damages).

This article discusses a series of proposed improvements to[ROS] which have
been motivated by the reported vulnerabilities and insufficiency of regar-
ding security [Bl 6] [7, [8]. Specifically, we will develop our discussion along the
following skeleton: we let a brief survey of related work motivate our work by

see also the efforts of ROS-Industrial, www.rosindustrial.org

2although there are exceptions: taking a stock exchange offline can have wide ranging
repercussions.
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showing the recognition and interest of the community (industrial and scientific)
to the problem of securing[ROS| In section[3] we provide an analysis of ROS vul-
nerabilities along with a detailed description on how an attacker would perform
a manipulation of a ROS application. We then review prior work concerning a
security architecture to harden on the application level (OSI layer 7), and
to harden the [ROS] core (in OSI layer 4), described in sections 4] and

To validate the efficacy of the security added to [ROS] we use section [f] to
compare the behavior of a “plain” and a hardened version thereof against
a fixed attack pattern. That is, we describe a practical testbed including a
dedicated tool for penetration testing ROS where messages are injected to see
how easy the system can be manipulated, unless cryptographic precautions are
implemented. In fact, their implementation is neither heavy weight nor difficult,
and our findings are that even a cryptographic light-weight armory can do quite
well already.

Cryptography, however, is insufficient by itself and depends on proper and
especially simple key-management. Most legacy systems, up to ones under
construction today, are designed to be repaired quickly and easily. For example,
if a module needs to be replaced, the service staff should not be required to
do more than unplug the malfunctioning module and replace it with the new
one. If cryptography comes into play, keys are stored all over the system, and
replacing a module with a new one requires refreshing the keys inside the whole
system. A proper key management is far from trivial and can make cryptography
cumbersome (if not infeasible) to apply.

Our proposed security enhancements for usable key-management (see section
therefore heavily rely on smart cards and tamper proof (sub-)modules to
handle the key management transparently for the engineers. This is to the end of
designing modules so that they, upon replacement, are capable of automatically
registering themselves with the system, while the required level of authenticity,
genuineness and secure logging are all assured.

The latter is a particularly important matter of forensic investigation in case
of system failures (in the worst case, involving harm to humans). This leads to
accountability as an independent requirement beyond CIA (or better “AIC” in
industrial systems), and must be considered separately. We discuss the matter
as part of the outlook and follow up work to this article (in section .

Our Contribution. Our work proposes a security architecture on the applica-
tion layer, along with a practical implementation and validation thereof. Since
plain ROS offers only limited native security, and changes to the operating sy-
stem (i.e., below the application layer) are usually nontrivial and expensive, the
question of how much security can be added “on top” arises. The main mes-
sage and novelty of this work is the finding that (first) ROS can be hardened
on the application layer to a wide extent, and that only a relatively thin layer
of (cryptographic) security implemented below layer 7 already thwarts many
known attacks (at the appeal of using existing “off-the-shelf” mechanisms and
technology). The contribution of this work is complemented by the verification
of the additional security, by demonstrating the newly gained resilience of our



hardened ROS against attacks reported in the related literature, and a demar-
cation of the line between what can be done on the application layer and which
security aspects must be rooted deeper or even outside the operating system.
This discussion constitutes the outlook in section We believe this matter
to be an important one besides purely technical aspects, and hope to stipulate
related research along these lines, motivated by the new findings in this paper.

2. Related work

The typical divide and combination between proactive and reactive security
measures is clearly biased strongly towards preventive actions to preserve sa-
fety in our context. While there has been considerable progress on intrusion
detection in [9, 10} [11], these measures inevitably come with false-negative
rates that may be unacceptable for human safety. The strong assurances provi-
ded by cryptographic techniques must, however, be considered carefully while
avoiding ad hoc solutions with yet (un)known weaknesses wherever possible [12].
The need for security in this context has long been recognized [13| 14} [I5] but re-
spective (re-)developments of the related systems did not happen until recently
[16 17, 18]: the most notable of such developments is ROS2 (http://ros2.org),
which is supposed to build upon the Data Distribution System (DDS) specified
by the Object Management Group (OMG]) [19} 20]. ROS2 will support multiple
DDS implementations for a user to choose from. The DDS-specified interface
is wrapped in a thin, feature-lean layer by ROS2 which does not support all
configuration mechanisms of DDS. Thus, features like QoS or security might be
left out. In addition, the ROS2 default DDS implementation recently changed
to Fast RT Pqﬂ which only implements the RTPS transport layer [2I] of DDS.
Security features of DDS, however, are specified on higher layers which are then
not used by ROS2 at all. To bridge this gap and towards using best-practices,
we propose to stick with well-established cryptographic primitives to secure the
communication within to the extent possible without inducing too much
overhead for key management.

Lera et al. [22] introduce an application layer security scheme for the “topics”
used with ROS’ publish/subscribe model, where an encrypting node is added
to the network. In this approach the encrypting node subscribes to the plain-
text topic, encrypts the received messages and publishes them as a seperate
topic. The encryption key is stored at the ROS-Master and is distributed when
a legitimate client as well as the encrypting node register at the master. The
subscribers read only from the encrypted topic and decrypt the messages with
the previously received key. It is also mentioned that the keys should be securely
transferred using asymmetric cryptography. Still, this method does not prevent
nodes from subscribing to plaintext topics (thus partly missing the confidenti-
ality goal), and has no mandatory integrity protection on encrypted messages.
Thus, subscribers may unknowingly fall victim to manipulated data. Finally, in

Shttp://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
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this approach the—in industrial context—most important security goal availability
is not discussed at all. Apart from that, there is also no mechanism which en-
sures that a node is trustworthy (genuine), i.e., using asymmetric cryptography
alone is not sufficient for secure key distribution. These drawbacks indicate
that simply encrypting messages is not enough to assure secure communication
between nodes regarding confidentiality, integrity and authenticity.

Another application-level approach has recently been presented in [23] where
the authors use special ROS services for authentication before the usage of cer-
tain resources (e.g., a database). This provides an additional layer of isolation
around critical application parts. The authors, however, state that communica-
tion in ROS is secured underneath using SSH which in fact is not the case. Thus,
their authentication scheme using usernames and passwords can very easily be
broken by an attacker.

In Section |4} we describe an application layer approach based on [24] which
ensures confidentiality as well as integrity and authenticity of messages.
Securing communication exclusively on the application layer also means
that itself is not modified, which still leaves several weaknesses in its ar-
chitecture unconsidered. Therefore, a transport layer approach, which requires
modification of [ROS] has to be taken into account as well.

The ROSRV project [25] is a very interesting approach to safety (primarily;
security comes as a second goal) of ROS-based applications. It uses runtime
verification of pre-defined models of the applications to detect and prevent acti-
ons which do not conform with the expected application behavior. The ROSRV
master acts as a transparent proxy to the master and checks each XML
Remote Procedure Call (XKMLRPC) call towards the master for its legitimacy
before letting it pass through. One drawback, however, is that ROSRV per-
forms the authentication of nodes based on IP addresses. Thus, an attacker
who has access to a host running a[ROSnode can circumvent that. In addition,
as shown in later sections, the assumptions that an attacker has to present itself
as legitimate node does not hold since the XMLRPC| APT gives enough
alternative attack surfaces.

The Open Source Robotics Foundation (OSRF) has started to implement
security for in the SROS projectlﬂ [26]. In SROS, the TCP communica-
tion channels are secured by using TLS to establish node-to-node connections
within the network. Further, policies are used to provide an access control
mechanism for topics, services, parameters and [XMLRPC] calls. The generation
and distribution of certificates and keys is handled by a keyserver node in a
preceding initialization phase. A drawback of this approach is the need of a
secure environment during the initialization phase, which cannot be presumed
in general. Aside from that, SROS is implemented only for Python and not at
all for C++-based nodes and communication via UDP is also not considered.
Due to these issues, we describe a concept for secure communication channels
between C+-+-based nodes using TCP as well as UDP communication via TLS

Inttp://wiki.ros.org/sros
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and DTLS in section [5| based on [27].

Recently, an approach to secure the ROS core on the internet layer has been
released?] IPSec is used to secure the communication channels. While this is
more transparent for users, it is less flexible than the certificate-based appro-
ach. In addition, access control to topics is done using plaintext files instead of
certificates which makes a manipulation not detectable.

A similar approach to ours is also followed in the Open Platform Communi-
cation - Unified Architecture (OPC-UA]) 28], and most strongly relates to our
work, with the main difference of our approach being intentionally less complex
to be easier to implement since OPC-UA additionally supports a client-server
paradigm and SOAP communication (while ROS communicates data only in
binary form ) with dedicated security models and also includes lots of flexibility
and functionality that may not be fully needed in a robot system. A design (like
ours) that strives for the minimal necessary functionality may thus reduce the
risk of security exploits using unneeded functions.

A whole line of apparently independent yet related research also looks at the
publish/subscribe model [29] not for [ROS| but rather in other contexts like
the internet [30]. While the requirements there are inherently different and ex-
pectedly more complex than for industrial manufacturing processes, the lessons
learned on attack patterns and behaviors are relevant to our study here too.
Especially so, since the need for penetration testing tools tailored to the special
settings of is demanding, yet there appears to be no intensive development
of related software. An independent contribution of this work is a step towards
satisfying this need.

3. Security issues in the Robot Operating System
We address several possible attack vectors on a ROS-application:
e Unauthorized Publishing (Injections)
e Unauthorized Data Access

e Denial of Service (DoY) attacks on specific ROS nodes.

As an example, we consider the following application (see figure [1)): a colla-
borative robot is working alongside humans to perform a certain manipulation
action (e.g., pick-and-place, assembly, etc.). Whenever a human comes close to
the robot, it is supposed to slow down or even stop if the human is too close. The
speed control of the robot is subscribing to the topic ”safety /human_detection”
which for the sake of simplicity just publishes a value in the set {0, 1,2} where
0 means no human is present, 1 means humans are in the collaborative zone
(work with reduced speed) and 2 causes the robot to stop since a human is too
close. A module like this might be realized using safety LIDARSs or similar met-
hods. An attacker who is aiming to cause harm to people near a robot (e.g., to

Shttps://sri-csl.github.io/secure_ros/
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(a) Logical view of the example. ~ (b) The robot stops when a LI-
DAR sensor sends the message ”sa-
fety /human_detection” with the values

2 (indicated red).

(¢) A human in the collaborative zone (d) When no human is nearby, the
causes the robot to run at reduced robot runs at full speed (indicated
speed (indicated yellow). green).

Figure 1: In this example application, the robot (the KUKA iiwa on the left) speed is influen-
ced by safety LIDARs which detect the distance of a human to the robot (the LIDARs are the
yellow cuboids between two robots). A visualization in the background indicates the current
safety zone using colors.

damage the reputation of the company) is trying to inject false safety readings
to pretend towards the robot that no person is nearby.

An attacker naturally does not want to be detected during the attack. Thus,
from an attacker’s point of view, it should be hard to spot the changes which
are made to the system. If an attacker has such an additional stealth goal, in
this means that the attacker should not be visible in the graph and
if another node is sabotaged this should ideally also not be represented there.
The term ROS graph means the connections between nodes constructed via
publish/subscribe relations, i.e. if subscriber S subscribes topic "sample/foo"
from publisher P, there is a connection between S and P in the graph.
This graph is constructed from the nodes known to the [ROS master and specific
information from the nodes on their communication connections.

3.1. Unauthorized Publishing (Injections)

A node in (plain) [ROS may publish data for an arbitrary topic without
prior authorization. This may be misused to inject data or commands into an
application in order to disturb its operation. As an example, a robot might
receive fake movement commands causing unpredictable motion that may harm



nearby persons or damage equipment (a video showing this behavior can be
found in the supplemental material of [24]). Also, false sensor data might be
injected into the system e.g., to fake a normal system state after a manipulation
or to provoke a certain reaction of the robot.

In our example, the attacker pretends to be the publisher of the topic ”sa-
fety/human_detection” to cause the robot to run at full speed despite a human
being nearby. In this simple case, the fake publisher will always send the value
0 in disregard of the real sensor readings. This attack can also easily be exten-
ded to redundant sensor nodes where multiple nodes run independently
to provide safety information. Thus, it is recommended to implement redun-
dant safety systems over different communication mechanisms, e.g., one node
may communicate using [ROS| another one might use Ethercat or a different
communication medium.

3.2. Unauthorized Data Access

Every node in may subscribe to every topic within the application.
After that, it will receive any data that is published for this topic. This data
can contain business-critical information or may be used to reverse-engineer a
production process. This attack is especially hard to discover since a node itself
may have no outgoing communication.

In the example presented above, a malicious node may want to listen to
the ”safety /human_detection” topic to be informed when a human is nearby in
order to trigger a certain action. However, it shall not be visible in the
graph, that there is an additional subscriber present.

8.8. Denial of Service

[DoSlattacks by publishing a large number of fake data can easily be launched
in ROS. The subscriber of this message type will be flooded with bogus messages.
This leads to a high processing load on all nodes and potentially to the inability
of performing meaningful processing. Since there is no control over which node
may publish what data, every node in the network may be used to publish data
for a topic which a target node is subscribed to. Later, this can be used for a
targeted attack on that node.

In ROS, a node can be shut down using a simple XMLRPC] call but doing
this would violate the attacker’s stealth goal since that node then disappears
from the graph. A different approach is to temporarily prevent that node
from doing meaningful work by publishing a huge amount of data to it. As
we will see in section [3.4] an attacker cannot only inject false data but can also
prevent the subscriber from receiving the real data. This also enables person-in-
the-middle attacks since a malicious node may act as a subscriber to a publisher
and as a publisher to a subscriber and transparently record and manipulate the
data flow between those two nodes.
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Figure 2: A sequence diagram showing the XMIRPClcalls performed for registering publishers
and subscribers as well as the XMLRPC| communication handshake between two nodes.

8.4. Attacking ROS

In this section we show how an attacker can publish (faked) messages in a
running application.

To this end, we first look at (with the help of figure [2) how the default se-
quence of launching a application works. At first, the master must
be started. Then publishers can register themselves at the master. To do this,
a publisher calls the procedure registerPublisher at the master via XML-
RPC with the topic names which the publisher is advertising, the
URI information later needed by subscribers, as well as topic names and types
as parameters. After receiving the response, the publisher is registered. Simi-
larly, subscribers can register at the master by calling the RMLRPC procedure
registerSubscriber. The response contains various parameters that enable
the subscriber to contact the right publisher of each requested topic. With the
XMLRPC] call requestTopic to the publisher, the subscriber provides a list of
desired protocols for the following communication. The publisher returns the
selected protocol along with any additional parameters required for establishing
a connection. Now, the subscriber is able to establish the channel (TCP or
UDP) for receiving the published topic messages from the publisher. Figure
shows the communication between a publisher and subscriber after the initial
XMLRPC] call. In the TCP case, some header information is exchanged before
actual topic data is sent by the publisher. In case of UDP communication, the
publisher directly sends topic data without prior handshaking.
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Figure 3: The communication workflow between two nodes after the XMLRPC] handshake.
The left diagram shows TCP communication, UDP is shown on the right side.

When consuming a service, no prior XMLRPC] call is necessary and ROS
does not support UDP-based communication with a service since consuming a
service is a synchronous action.

Based on the knowledge of the data-flow, an attacker can now develop a
workflow to misuse the communication channels in in order to inject false
data. The attack goal is to separate a subscriber from all its input publishers,
without the subscriber, the publishers or the [ROS] core noticing that. Note that
an attack with the intent to eavesdrop data has a very similar workflow and
requires even less effort. Furthermore, we stress that the attack sequence we
describe does not make use of any tools (like rostopic) and thus needs
no access to a ROS-enabled network node. We assume, that an attacker has
already breached network security (e.g., firewall) to attack the application itself.

As a first step, the attacker needs to find the URI of the master (if
it cannot be read from the ROS_.MASTER_URI environment variable). To
do so, typically an Address Resolution Protocol (ARP]) scan is performed to
identify the hosts in the network. Then the master can be found by trying
the default port on each host until the master is found. If the master is
configured to use a different network port, a full portscan on all nodes must be
performed (which might already be detected by security systems and is thus the
last measure taken by an attacker [31]). Figure 4] shows a sequence diagram of
the attack on Once the master URI is known, we can use the
API to reconstruct the[ROSlgraph, i.e., a model that shows connections between
nodes based on publish/subscribe relationships.

The attacker is now able to call the[XMLRPC|procedure getSystemState at
the master. The master will return information about the registered publishers,
subscribers and services. After extracting the name of the subscriber which
should receive the (faked) messages, the attacker is able to send the
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The procedure calls marked in red shows the most critical points where the subscriber is
isolated from its publisher using the publisherUpdate call.

message lookupNode, with the name of the node as parameter, to the master.
The master will return the URI of the subscriber. With this URI, the attacker
is able to send the XMLRPC] message publisherUpdate to the subscriber. The
parameters of this message are the topic and a list of the new publishers to
the topic. The name of the topic is known from the information about the
subscribers and the list of the new publishers contains the (fake) publisher
created by the attacker. While the original publisher is still active and visible in
the graph, its data will not reach the subscriber anymore. Note that this
attack is reversible, thus, after being done, the attacker can just send another
publisherUpdate containing the original publishers.

8.4.1. Attack analysis

We now go through the individual steps of the attack and analyze what
weaknesses they exploit. First, the API of is not secured with
authentication or authorization. Thus, an attacker can use the calls to the
master to retrieve the graph as well as communication parameters for
each node and topic information. Second, a subscriber does not check if the
publisherUpdate procedure is called by a valid client. It would be an impro-
vement to just check that the calling host is indeed the host of the master.
However, a proper authentication and authorization should be preferred. Third,

11



a subscriber does not inform the master of a changed set of publishers. In a
case, where the subscriber is isolated from its valid publishers, it will no longer
be represented in the graph. The attacker can also not be seen there for
the same reason.

Note that an eavesdropping attack has a similar structure as an injection,
thus the description here also holds true for this case. One additional form
of attack would include the manipulation of parameters since it is possible to
make targeted change to the parameters a specific node uses (from the
parameter server).

8.4.2. Hardening through configuration

Some obstacles for an attacker can already be constructed in the application
configuration. First, changing the network port of the master is the most
obvious step. This forces an attacker to run a port scan on a broad port range
in the network to find the master which can be detected by security systems.

In addition, shutting down the[ROS|master after the application is initialized
can make it very hard for an attacker to interfere. However, this also drastically
reduces the robustness of an application since a restarting (or late-starting)
node cannot join the graph again. Further, the parameter server is no longer
accessible to the nodes.

4. Hardening [ROS| on the application level

A first approach to securing [ROS] can be realized at the application level. We
introduce a dedicated Authentication Server ([(AS) which keeps track which [ROY
node may subscribe to or publish to a topic. In addition, the manages the
authentication of nodes and generates the topic-specific encryption keys. We
assume the to be subject of strong physical and logical access control, i.e.,
it can be mounted and running in a high(er) security domain. The respective
security precautions are relatively stronger, but focused on a single component.
This buys us security for a large and highly distributed system at the cost of
strong security at only one point (the [AS]).

The publish/subscribe paradigm can be reformulated as a broadcasting com-
munication pattern. Many publishers of a certain topic may be passing data to
multiple subscribers. Thus, methods from broadcast encryption may be app-
lied to the problem where this broadcasting needs to be done in a secure and
authentic way. While it is not too difficult to establish the necessary crypto-
graphic operations, those nevertheless need to be incorporated at every step of
the process. For this reason, we divide the architecture description into phases
according to the lifecycle of a publisher and subscriber, and describe the relevant
cryptographic operations per phase.

To start, let us assume that every possible message being transmitted by a
publisher can be classified to fall into one out of a finite number N of topics. Let
us reference these topics by indices i € {1,2,..., N} in the following. We will
enforce a publisher to specify the topic (or several topics) from which messages

12



are to be expected. This specification is done once during the registration, and
then kept fixed for the lifetime of the publisher. Every other topic from the
publisher will be rejected by the The relevant details of the registration
process are expanded in the next section.

Hereafter, we write E(m,k) to mean the encryption (symmetric or asym-
metric) of a message m under a key k. For asymmetric cryptography, we write
pk, sk to mean the public and private key of an entity. For digital signatures,
let sign(m, sk) be the signature function taking a message m and private key
sk to output a signature s. That signature s can be verified by a function
verify(s,pk) € {true,false} that takes the public verification key as an ad-
ditional input to the signature, and outputs either true or false, depending
on whether or not the signature was cryptographically valid. In the following
we let our description be abstract, yet emphasize that possible cryptographic
schemes are AES for symmetric encryption, and RSA to handle asymmetric
matters. The symbol z||y means the concatenation of the data items = and y
in a way so that x and y can both be recovered uniquely from the compound
representation z||y. Usually, this will be a humble string concatenation, with a
proper separator symbol.

4.1. Registration of a new[ROI node

A[ROSInode starting up has to authenticate itself to the[AS before it can join
the graph. To do this, it first runs a (digital signature based) challenge-
response authentication with the to certify itself as a legitimate new node.
The set of nodes in the application is assumed to be known at configuration
time and is presented to the as list of certificates. Note that working with a
pre-known set of nodes (i.e., a fixed communication graph) is also the approach
of SROSﬂ Specifically, suppose each known (trusted) source S is known to the
authentication server as a cryptographic (X.509) certificate, containing a public
signature verification key pks. Assume that a node N, affiliated to a trusted
source S, wants to register itself in the[AS] then it can only do so upon successful
completion of the steps detailed in Figure

After the successful authentication of the new node to the [AS] the same
procedure is done from the to the node to avoid a person-in-the-middle
situation. In such an attack, acting as proxy, an attacker could trick the or
the node to send their data through this proxy resulting in it having full access
to the data stream.

After this procedure, node-type specific communication with the follows.
For a subscriber, the sends the subscriber a (digitally signed) list of public
signature verification keys related to publishers of the message topics that the
subscriber has registered for. The rationale is that every publisher is obliged to
digitally sign its messages for authenticity, since a subscriber will drop messages
under the following circumstances:

Shttp://wiki.ros.org/sros
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1. Along with the registration request, /N submits a public key certifi-
catd’ Z = (N, pkn, S, sign(N|pkn||S, sks)) to the[ASl In particular,
the certificate Z thus tells the [AS] who the source S of the new node
is.

2. The[ASlooks up the authentically stored public signature verification
key of S, and verifies the certificate by checking if verify(Z, pks) Z
true. Iff so, then it sends a random number r to N, which N digitally
signs with its secret key sky that belongs to the public signature
verification key pky. The new node candidate N then replies by
sending the signature sig = sign(r, sky) back to the

3. As before, the takes the (authenticated) public key pky to verify
that the signature on r is correct. That is, it accepts the new node
N iff verify(sig, pky) = true.

%Note that the content of the certificate is intentionally restricted to only the relevant
contents; the real certificates would have a much richer and complex structure.

Figure 5: Simple Certificate Based Challenge-Response Authentication.

e the digital signature is missing or invalid

e the digital signature does not come from a previously known publisher.
Note that looking up the signature verification key in the list given by the
means that the[AS|has taken care of the identity check of the publisher
previously. Thus, the subscriber’s trust in the publisher is based on its
trust in the (to have properly completed the authentication), and the
trust in the digital signature.

For publishers, the needs to handle the distribution of encryption keys
for topics. Assume that the new publisher P has registered to send messages
under topic ¢ (where i identifies some message topic). For each such message
topic, the maintains an individual session key K;. Every publisher that
registers for messages of topic ¢ is given the respective session key(s) K; (along
the authentication), under which it can encrypt its data and publish it to all
subscribers. The subscriber, upon its registration for the same topic i, gets the
same session key K; from the

If publisher P wants to broadcast a data item in an authenticated fashion,
it completes the following tasks:

1. it attaches its identity P to the data item m (belonging to topic ¢) and
encrypts P||m under the session key K; into a ciphertext ¢ = E(P||m, K;).

2. it digitally signs the data item under its private signature key skp, thus
getting a signature value s = sign(c, skp).

3. it attaches the topic i to the compound packet and broadcasts the tuple
(i,¢, ) to all subscribers.
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Upon reception of a digitally signed message M = (i, ¢, s), a subscriber parses
M and completes the following steps:

1. it deciphers ¢ using the known secret key K; to retrieve the sender’s iden-
tity P and the data item m (the correct session key K; is indicated by
the first entry in M). Note that this step is only possible if the subscri-
ber has previously registered for messages of that particular topic ¢ (the
key K; was given during the registration); if not, then M can be dropped
immediately before any decryption attempts.

2. it verifies the digital signature s using the respective public key pkp of
the identity obtained in the first step (this spares the subscriber to work
through the entire list of potential publishers for that message item).

3. it accepts the data item m if and only if m deciphered correctly under K,
and the digital signature s on E(P|m, K;) has been verified correctly.

4.2. Discussion of application-level security

With the presented application-level approach for security, we can al-
ready tackle some of the security vulnerabilities. We can prevent unauthorized
nodes from publishing and subscribing and thus from injecting false data and
from eavesdropping. This is achieved by topic-specific encryption keys which
are only handed out to authorized application modules.

Still some insufficiencies persist which cannot be handled on the applica-
tion level alone. First, only the message content is encrypted, not the message
headers. This still allows for frequency analysis of certain message types. Se-
cond, the application-level approach cannot prevent nodes from joining the ROS
graph or from publishing (even though meaningless) messages to the applica-
tion which still enables Denial of Service (DaS) attacks on specific nodes. Third,
this approach cannot ultimately regulate a node’s subscription to arbitrary to-
pics. Thus, all messages of a certain topic will be delivered to it. Our approach
only ensures that this subscriber cannot read the message contents without the
proper decryption key. Finally, the application-level approach requires nodes
to be rewritten to incorporate the security protocol. This is realistic for small
applications which do not need external modules from other developers.
Still, a more transparent solution is required for more complex applications.

In the next section, we present such an approach which describes the modifi-
cation of the source code itself to make the changes transparent to existing
and new nodes.

5. Securing the [ROS| communication channel

While the application-level approach already mitigates many security risks
in ROS, it also requires each [ROS|node to implement the security functions thus
requiring all modules to be recompiled. To make the security function transpa-
rent to application-level modules, we need to modify the communication
itself. To overcome the limitations that a purely application-level approach in-
herently has, we present a modified version of the communication between
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nodes which has been extended with authentication and confidentiality. We
focus on the direct communication between two nodes (be it publishers and
subscribers or services/actions and their clients) to ensure security already at
this lowest level.

5.1. Secure channel design

The following changes to the core have been implemented in
Kinetic. Note, that a backport to older versions should be simple since the
communication core has not been changed in a longer period of time m The
security concept described here works for all types of communication i.e.,
for publish/subscribe, actions and services.

The basic approach we take to secure the communication is to use Transport
Layer Security (TLS) [32] and Datagram Transport Layer Security (DTLS) [33].
In addition we perform authorization for each node on a per-topic basis. (D)TLS
works in a similar manner like our application-level protocol presented above. It
first performs a handshake using public-key cryptography and then uses symme-
tric encryption during the communication to ensure data confidentiality. Data
integrity is secured by using Message Authentication Codes (MACE). After the
(D)TLS handshake is complete, we perform fine-grained authorization of each
node to ensure that topics are only accessible by trusted nodes. We use X.509
certificates which encode node identity and public keys along with authoriza-
tion information (e.g., the topics which may be published or subscribed by this
node).

The communication flow between master and nodes has already been
described in section Our approach is located after the initial XMLRPC|
call from subscriber to publisher (or at the communication start between client
and service/action). After the TLS connection is established, the exchanged
certificates are used to determine the authorization of each node for this type of
communication. This is done under consideration of the type of communication
pattern i.e., a publisher checks if a subscriber is allowed to consume its data,
a subscriber checks if the data of a publisher may be processed and a service
checks if it may be consumed by another node. If the validation of a node
certificate fails, no further communication is performed.

We incorporate this procedure directly into the TCP/UDP channel of
which is implemented in the roscpp package. For both, TCP and UDP, an
initial handshake is performed before headers are exchanged. This TCPROS
handshake is used to exchange headers and topic data describing the message
definitions, caller IDs and the topic. By performing the TLS handshake first, the
TCP channel handshake of the communication protocol is already secured.
After that, all communication data is rerouted through the respective encryption
and decryption facilities. To perform the TLS handshake, authorization and
authentication, X.509 certificates are used.

7compare the connection.cpp file of ROS on githubhttps://github.com/ros/ros_comm/
commits/lunar-devel/clients/roscpp/src/libros/connection.cpp
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Figure 6: The new, secured communication pattern between two nodes. Again, we show
TCP on the left and UDP on the right side. Note, that the UDP communication is now
bidirectional and that for both, TCP and UDP, (D)TLS handshakes are performed before any
further communication.

For UDP, in the plain ROS implementation the publisher just starts (after
the RMLRPJ call) by sending a UDP package containing the topic data from
the publisher to the subscriber. Afterwards, UDP packages are sent whenever
new data is published. Thus, in this implementation, the UDP communication
is unidirectional from publisher to subscriber. To secure the channel using
DTLS, again a handshake is necessary. This handshake needs bidirectional data
exchange for the challenge-response protocol. Thus, the publisher must open an
UDP server socket to receive datagrams from the subscriber. To secure already
the first UDP data packet from the publisher to the subscriber, the DTLS
handshake is performed in parallel to the call from the subscriber
to the publisher. The [XMLRPC] call is synchronized to this handshake and
thus, it is not finished before the DTLS handshake is complete. This is a rather
invasive change to the default ROS|communication protocol but it is necessary to
provide secure UDP communication. Afterwards, the dataflow is unidirectional
from publisher to subscriber again.

Figure[f]shows the new communication flow between in the secure implemen-
tation for TCP and UDP. Comparing this to the original flow shown in figure
it can be seen that (D)TLS handshakes are performed first to also secure hea-
der exchange. In case of UDP communication, also an additional bidirectional
communication had to be introduced to perform the handshake.

Any future communication between the two nodes for this specific topic is
then secured using the (D)TLS channel. Thus, all data which is exchanged
is encrypted and signed resulting in a confidential and trusted communication
between the nodes.

5.2. Discussion of the secure communication channel

The secure communication channel ensures confidentiality and integrity of
messages and increases the availability by minimizing the attack surface for
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attacks. It can transparently be used with existing nodes without the
need for recompilation. Nodes need valid certificates to perform the (D)TLS
handshake at the beginning of their communication. The absence of a certificate
prevents an attacker from contacting any other node. Performance evaluations
in comparison with the unmodified communication core can be found in
[27].

This approach however, does not secure the XMLRPC| API of Thus,
an attacker can still retrieve the node graph, send publisherUpdates and shut-
down nodes. In the master-side of that API is implemented in Python,
thus the approach to only modify roscpp cannot cover this part. In combination
with the SROS and/or ROSRV[25] projects however, it is possible to achieve
security at both levels and in addition incorporate python nodes. Showing a
successful demonstration of this combination is part of our future work.

6. Penetration testing

Penetration testing [34] is a very popular method to test the vulnerability of
a system to certain attacks. In this section we present steps to penetrationtest
a ROS system and what the resulting consequences are for applications with
and without security. Note that we do not describe a penetration test for the
network security but just for the application itself. Also, note that we do
not test the vulnerabilities in the XMLRPC| API, since at the moment, this can
only be secured using SROS or ROSRV.

To facilitate penetration testing of ROS applications, we have developed
RosPenTo, a tool for (semi-)automated penetration testing specifically for ROS.
It exploits the inconsistencies and missing authentication and authorization
in the XMLRPC-API of ROS. It works analogous to the flow described in
RosPenTo can be used in automatic mode e.g., for use in course of continuous
integration tasks, or manually with a user interface to explore and manipulate
a running application. With RosPenTo it is easy to show how to ROS appli-
cations can be manipulated without that attack being recognized by others. It
allows for the isolation of publishers and subscribers and also for the injection
of false data.

The validation of the proposed architecture is driven by the attacks described
in precursor work and reports on weaknesses of ROS (see Section . The
respective experimental design was towards reproducing the conditions under
which known weaknesses of ROS were to become exploitable, and then run
the attack (as the literature describes it) on the hardened version of ROS as
described in this work. The outcome was recorded as a success, if the attack
failed.

We show a comparison of effects for attack actions on without secu-
rity, with application-level security and secure communication channel in table
[ It can be seen that in default ROS an attacker cannot be hindered in the
execution of actions. When implementing security on the application level, the
attacker may still subscribe or publish but received data cannot be interpreted
and sent data will be ignored due to the missing (or not verifiable) signature.
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Effect

Att'acker Unmodified ROS Appllcatlor.l- Sec'ure communi-
action layer security cation channel
Subscribe Subscription is per-  Subscription is per- Without valid
formed formed but message certificate, com-
contents cannot be munication is
interpreted cancelled due to
failed (D)TLS
handshake.
Publish Data is received Message is received Subscriber will not
and interpreted but will be rejected perform subscrip-
due to invalid sig- tion since (D)TLS
nature handshake fails
Consume Service can be cal- Service result can- (D)TLS handshake
service led normally not be consumed. fails.
Advertise Service is consumed Result cannot be (D)TLS handshake
service regularly consumed by other fails.
nodes.
Unauthorized Access granted Topic  key not Communication
access to to- transferred by [ASl  canceled due to
pic (with access to unautho-

valid certifi-
cate)

rized topic.

Table 1: Comparison of reaction to attacks between unmodified [ROS| application-level secured
[ROS| and [ROS| with secure communication channel.

The communication channel security makes sure that illegitimate nodes are ex-
cluded already at the start of the communication (due to their missing valid
certificate). In cases where (by whatever means) an attacker can present a valid
certificate (e.g., of another node), both security approaches use fine-grained to-
pic access control mechanisms to ensure that only topics which previously have
been granted may be subscribed to or published.

7. Outlook

7.1. Usable key management

When securing an I'T system, the process that establishes cryptographic keys
whenever they are needed is crucial for the overall security. Hence we describe
essential steps in the so called key management process in the remainder of this
section. These steps include

e the enrollment of new ROS components,
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e the de-registration of (old or broken) components, and
e the remote and on-site maintenance

Additionally to these steps we will briefly discuss the prerequisites and a simple
technique to reduce the memory requirements especially for public keys.

7.1.1. Prerequisites

During manufacturing, each components is provided an X.509 certificate,
containing a unique device identifier (DID) (subject name in Figure[7)), a public
key, and other data, and the corresponding private key. Ideally, the private key is
stored in a trusted device (e.g., a trusted platform module (TPM)-like module).
Note that for security reasons, separate functions (or groups of functions) should
be protected by separate keys (or key pairs in case of asymmetric cryptography).

7.1.2. Enrollment and of new Components

For enrollment, the component sends a standardized and timestamped re-
gistration request to the Master. The Master verifies the certificate of the new
component and checks the signature of the enrollment request with the public
key of the component. After validating the request, the Master checks if the
is on the list of valid devices. If so, the Master opens a TLS session with
the new component. Ideally, a security suite providing perfect forward security
should be used (e.g. ECDHE-ECDSA-AES256-GCM-SHA384), i.e. that the
public key of the component is only used for authenticating parameters of the
key agreement (ECDHE in the example), but not for encryption of a session key.
As soon as the TLS session is established, the Master replaces all pre-installed
keys (aka transport keys) and certificates by new ones.

Note that a malicious manufacturer — depending on the key exchange me-
chanism (e.g. whenever RSA is used for authentication and key-exchange) —
that can log all messages transmitted during the replacement of the transport
keys can still get hold of the new keys (and certificates). The only way to inhibit
this attack is to run the key replacement protocol in a closed environment.

7.1.8. De-registration of Components

For the de-registration of a component, its and its certificate serial
number are simply removed from the list of valid devices stored at the Master
node (and cached at nodes with sufficient memory). From this moment on, no
other component will accept messages from the de-registered device, because
the check of the corresponding certificate will fail.

7.1.4. Maintenance of Components

If the configuration of a device has to be changed, this can easily be done
remotely over a TLS-secured channel. If the communication link to the device
is broken, or a technician has to interact directly with a component for any rea-
son, the following protocol for offline authentication can be used. Similar to the
authentication triplets (see [35] [36]) used during the authentication of a GSM
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Needed for

Version Number

Serial Number revocation status check
Signature Algorithm ID

Issuer Name

Validity period (Not Before, Not After) validity check

Subject name DID

Subject Public Key Info (Public Key Algorithm, Subject Public Key) encryption / verification
Issuer Unique Identifier (optional)
Subject Unique Identifier (optional)
Extensions (optional)

Certificate Signature Algorithm
Certificate Signature

Figure 7: Elements of an X.509 certificate.

cellphone against the (untrusted) base station, the technician (respectively his
maintenance device) only gets a challenge, a response, and a session key. The
maintenance device does not get a secret key, normally used during the chal-
lenge response protocol run. To authenticate, the maintenance device sends the
challenge and the response to the component. The component verifies that the
response is based on the challenge and the locally stored authentication key (or
in case of asymmetric cryptography the public verification key). After successful
verification, the component derives the session key and hence a secured chan-
nel between the component and the maintenance device can be established. If
secured means encrypted and authenticated, the scheme can easily be extended
by a derived or provided authentication key.

7.1.5. Memory saving Storage of Public Keys

A classical X.509 certificate most commonly contains the data depicted in
Figure [ After verifying a certificate the first time, unnecessary information
(formatted in italic above) can be dismissed, especially the certificate signature.
This reduces the memory demand to approximately 50%. Since the certificate
signature does no longer protect the authenticity of the data, the authenticity
has to be ensured by other means (like internal storage of a trusted device).

7.2. Accountability

A system is accountable if it can give evidence of its actions and this evidence
can be understood by a (human) investigator. It allows the investigator to
pinpoint the cause of a problem or the deviation from a (security) protocol.
Evidence obtained from such an accountable system can be used to understand
and improve the system, for instance by helping to trace bugs, or to pursue legal
action against either the manufacturer of a system or an attacker, for example
by providing forensic evidence. Additionally, while an accountability mechanism
does not help to prevent unwanted events, it helps to detect them, analyze the
root cause and develop measures to prevent future occurrences of this unwanted
event.
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In addition to the reversal of the[CIAMriad elaborated on in the introduction,
are often resource-constrained systems that are not capable of performing
advanced encryption methods, they may not be connected to the internet and
thus cannot receive security updates or be informed about revoked certificates.
They are often required to support emergency overrides (“break the glass po-
licy”) and need to be easy to repair and replace. For example, an insulin pump
needs to support manual overrides in case of life threatening situations and its
power supply must be exchangeable without any, often time-consuming, authen-
tication during an emergency. Such requirements are impossible to fulfill with
just the classical [CIAlMrinity. With an accountability infrastructure in place it
is, however, possible to allow overrides by, for example, swiping a badge. The
action is logged and the proportionality of the measure can be judged after the
critical situation is over.

Another challenge is the rise of highly automated and even fully autonomous
[CSk. Such systems make decisions based on their sensor input and no longer
have a human in the loop. It is impossible to cover all potential corner cases of
a system’s operation environment and thus such systems need mechanisms to
reconstruct their decision process, analyze an accident and, if necessary, assign
blame for unwanted events. A widely discussed class of such systems are, for
example, autonomous cars and their accidents.

All these constraints cannot be fulfilled with traditional information security
measures alone [37] and require new solutions (e.g., by continuously evaluating
the current “security level” of a system [38]). To cover the attack surface left by
traditional measures, we will extend with facilities to support accountabi-
lity. We are also considering the possibility to reduce some traditional measures
(e.g., authentication) and cover the shortfall with accountability. Forgoing some
measures can in some cases have tangible benefits. For instance, forgoing en-
cryption can yield significant performance gains and skipping the authentication
of service personal or the integrity checks of replacement parts can make system
maintenance faster, easier, more reliable and ultimately cheaper.

A prerequisite for accountability is a secure and redundant logging infra-
structure. To fill this gap, we are currently working on extending with
a block chain based logging mechanism that ensures the authenticity, tamper
evidence and availability of the log messages, for instance by distributing the
logs over all nodes.

The other problem is to define meaningful log messages, develop ways to
(semi-)automatically reason about them and to find the right trade-off between
log volume and log completeness. Ideally, such a system should only log a mi-
nimum of relevant events. This trade-off is especially important from a privacy
and data protection point of view (see for example the new EU regulation on
privacy protection [39]). In many jurisdictions not everything that can be re-
corded may be legal to record. Especially when recording personal information,
it is often necessary to prove the relevance of the data. This is one of the rare
cases, where the needs of engineers and privacy advocates align: both want to
log only a minimal amount of information. Engineers work with resource con-
strained devices and often have too much data to process and the cardinal rule
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of data protection is to log only minimal data. We investigate these problems
in an interdisciplinary project together with legal scholars and work towards
guidelines and best practices for law abiding, yet sufficiently powerful logging
mechanisms for

8. Conclusion

In this paper we have given an overview of security issues in and have
presented approaches to solve them. We have shown how easy an attacker
can make use of weaknesses in the design. Our application-level appro-
ach secures small applications without the need to dig deep into the
sourcecode. A transparent solution to secure roscpp-based nodes has been
presented. Here, we modify the sourcecode of to establish (D)TLS chan-
nels ensuring authentication, authorization and confidentiality of information
exchange between nodes. In combination with e.g., SROS or ROSRV, an even
more comprehensive security solution can be built.

In future work we will concentrate —as presented above— on usable key ma-
nagement and accountability. Aside from that, we will work on integrating our
secure channel with SROS and extend it with further security functions such as
signed logging and hardware-based cryptography.
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